Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{a^{2}t^{2}}{\left(at\right)^{2}+\left(bt\right)^{2}}\mathrm{d}t
Expand \left(at\right)^{2}.
\int \frac{a^{2}t^{2}}{a^{2}t^{2}+\left(bt\right)^{2}}\mathrm{d}t
Expand \left(at\right)^{2}.
\int \frac{a^{2}t^{2}}{a^{2}t^{2}+b^{2}t^{2}}\mathrm{d}t
Expand \left(bt\right)^{2}.
\int \frac{a^{2}t^{2}}{t^{2}\left(a^{2}+b^{2}\right)}\mathrm{d}t
Factor the expressions that are not already factored in \frac{a^{2}t^{2}}{a^{2}t^{2}+b^{2}t^{2}}.
\int \frac{a^{2}}{a^{2}+b^{2}}\mathrm{d}t
Cancel out t^{2} in both numerator and denominator.
\frac{a^{2}}{a^{2}+b^{2}}t
Find the integral of \frac{a^{2}}{a^{2}+b^{2}} using the table of common integrals rule \int a\mathrm{d}t=at.
\frac{a^{2}t}{a^{2}+b^{2}}
Simplify.
\begin{matrix}\frac{a^{2}t}{a^{2}+b^{2}}+С_{5},&\end{matrix}
If F\left(t\right) is an antiderivative of f\left(t\right), then the set of all antiderivatives of f\left(t\right) is given by F\left(t\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.