Evaluate
\frac{ta^{2}}{a^{2}+b^{2}}+С
b\neq 0\text{ or }a\neq 0
Differentiate w.r.t. a
2\times \left(\frac{b}{a^{2}+b^{2}}\right)^{2}at
Share
Copied to clipboard
\int \frac{a^{2}t^{2}}{\left(at\right)^{2}+\left(bt\right)^{2}}\mathrm{d}t
Expand \left(at\right)^{2}.
\int \frac{a^{2}t^{2}}{a^{2}t^{2}+\left(bt\right)^{2}}\mathrm{d}t
Expand \left(at\right)^{2}.
\int \frac{a^{2}t^{2}}{a^{2}t^{2}+b^{2}t^{2}}\mathrm{d}t
Expand \left(bt\right)^{2}.
\int \frac{a^{2}t^{2}}{t^{2}\left(a^{2}+b^{2}\right)}\mathrm{d}t
Factor the expressions that are not already factored in \frac{a^{2}t^{2}}{a^{2}t^{2}+b^{2}t^{2}}.
\int \frac{a^{2}}{a^{2}+b^{2}}\mathrm{d}t
Cancel out t^{2} in both numerator and denominator.
\frac{a^{2}}{a^{2}+b^{2}}t
Find the integral of \frac{a^{2}}{a^{2}+b^{2}} using the table of common integrals rule \int a\mathrm{d}t=at.
\frac{a^{2}t}{a^{2}+b^{2}}
Simplify.
\begin{matrix}\frac{a^{2}t}{a^{2}+b^{2}}+С_{5},&\end{matrix}
If F\left(t\right) is an antiderivative of f\left(t\right), then the set of all antiderivatives of f\left(t\right) is given by F\left(t\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}