Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 18x^{2}\mathrm{d}x+\int -20x^{3}\mathrm{d}x+\int -\frac{x^{4}}{2}\mathrm{d}x
Integrate the sum term by term.
18\int x^{2}\mathrm{d}x-20\int x^{3}\mathrm{d}x-\frac{\int x^{4}\mathrm{d}x}{2}
Factor out the constant in each of the terms.
6x^{3}-20\int x^{3}\mathrm{d}x-\frac{\int x^{4}\mathrm{d}x}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 18 times \frac{x^{3}}{3}.
6x^{3}-5x^{4}-\frac{\int x^{4}\mathrm{d}x}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -20 times \frac{x^{4}}{4}.
6x^{3}-5x^{4}-\frac{x^{5}}{10}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply -\frac{1}{2} times \frac{x^{5}}{5}.
6x^{3}-5x^{4}-\frac{x^{5}}{10}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.