Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
To add or subtract expressions, expand them to make their denominators the same. Multiply -a-1 times \frac{a+1}{a+1}.
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Since \frac{2a+10}{a+1} and \frac{\left(-a-1\right)\left(a+1\right)}{a+1} have the same denominator, add them by adding their numerators.
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Do the multiplications in 2a+10+\left(-a-1\right)\left(a+1\right).
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Combine like terms in 2a+10-a^{2}-a-a-1.
\int \left(\frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Divide \frac{a^{2}-5a+6}{a^{2}+7a+6} by \frac{9-a^{2}}{a+1} by multiplying \frac{a^{2}-5a+6}{a^{2}+7a+6} by the reciprocal of \frac{9-a^{2}}{a+1}.
\int \left(\frac{\left(a-3\right)\left(a-2\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(a+1\right)\left(a+6\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Factor the expressions that are not already factored in \frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}.
\int \left(\frac{a-2}{\left(-a-3\right)\left(a+6\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Cancel out \left(a-3\right)\left(a+1\right) in both numerator and denominator.
\int \left(\frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)}+\frac{a+6}{\left(a+3\right)\left(a+6\right)}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-a-3\right)\left(a+6\right) and a+3 is \left(a+3\right)\left(a+6\right). Multiply \frac{a-2}{\left(-a-3\right)\left(a+6\right)} times \frac{-1}{-1}. Multiply \frac{1}{a+3} times \frac{a+6}{a+6}.
\int \frac{-\left(a-2\right)+a+6}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Since \frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)} and \frac{a+6}{\left(a+3\right)\left(a+6\right)} have the same denominator, add them by adding their numerators.
\int \frac{-a+2+a+6}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Do the multiplications in -\left(a-2\right)+a+6.
\int \frac{8}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Combine like terms in -a+2+a+6.
\int \frac{8\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)\times 2a^{2}}\mathrm{d}x
Multiply \frac{8}{\left(a+3\right)\left(a+6\right)} times \frac{2a^{2}+5a-3}{2a^{2}} by multiplying numerator times numerator and denominator times denominator.
\int \frac{4\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}\mathrm{d}x
Cancel out 2 in both numerator and denominator.
\int \frac{4\left(2a-1\right)\left(a+3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}\mathrm{d}x
Factor the expressions that are not already factored in \frac{4\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}.
\int \frac{4\left(2a-1\right)}{\left(a+6\right)a^{2}}\mathrm{d}x
Cancel out a+3 in both numerator and denominator.
\int \frac{8a-4}{\left(a+6\right)a^{2}}\mathrm{d}x
Use the distributive property to multiply 4 by 2a-1.
\int \frac{8a-4}{a^{3}+6a^{2}}\mathrm{d}x
Use the distributive property to multiply a+6 by a^{2}.
\frac{8a-4}{a^{3}+6a^{2}}x
Find the integral of \frac{8a-4}{a^{3}+6a^{2}} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{\left(8a-4\right)x}{a^{3}+6a^{2}}
Simplify.
\frac{\left(8a-4\right)x}{a^{3}+6a^{2}}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.