Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{2x\left(x-2\right)\left(x+1\right)\left(x+2\right)}{x+1}\mathrm{d}x
Factor the expressions that are not already factored in \frac{2x^{4}+2x^{3}-8x^{2}-8x}{x+1}.
\int 2x\left(x-2\right)\left(x+2\right)\mathrm{d}x
Cancel out x+1 in both numerator and denominator.
\int 2x^{3}-8x\mathrm{d}x
Expand the expression.
\int 2x^{3}\mathrm{d}x+\int -8x\mathrm{d}x
Integrate the sum term by term.
2\int x^{3}\mathrm{d}x-8\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{2}-8\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 2 times \frac{x^{4}}{4}.
\frac{x^{4}}{2}-4x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -8 times \frac{x^{2}}{2}.
-4x^{2}+\frac{x^{4}}{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.