Solve for k
k=-\frac{4}{2-ℏ}
ℏ\neq 2
Solve for ℏ
ℏ=2+\frac{4}{k}
k\neq 0
Share
Copied to clipboard
kℏ-4=2k
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by k.
kℏ-4-2k=0
Subtract 2k from both sides.
kℏ-2k=4
Add 4 to both sides. Anything plus zero gives itself.
\left(ℏ-2\right)k=4
Combine all terms containing k.
\frac{\left(ℏ-2\right)k}{ℏ-2}=\frac{4}{ℏ-2}
Divide both sides by ℏ-2.
k=\frac{4}{ℏ-2}
Dividing by ℏ-2 undoes the multiplication by ℏ-2.
k=\frac{4}{ℏ-2}\text{, }k\neq 0
Variable k cannot be equal to 0.
kℏ-4=2k
Multiply both sides of the equation by k.
kℏ=2k+4
Add 4 to both sides.
\frac{kℏ}{k}=\frac{2k+4}{k}
Divide both sides by k.
ℏ=\frac{2k+4}{k}
Dividing by k undoes the multiplication by k.
ℏ=2+\frac{4}{k}
Divide 4+2k by k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}