\gamma ^ { 2 } = \operatorname { arcos } ( \frac { 55 ^ { 2 } + 76 ^ { 2 } + 93.812 } { 2 ( 55 ) ( 76 ) }
Solve for a
\left\{\begin{matrix}a=\frac{\gamma ^{2}}{\cos(\frac{117037}{110000})r}\text{, }&r\neq 0\\a\in \mathrm{R}\text{, }&\gamma =0\text{ and }r=0\end{matrix}\right.
Solve for r
\left\{\begin{matrix}r=\frac{\gamma ^{2}}{\cos(\frac{117037}{110000})a}\text{, }&a\neq 0\\r\in \mathrm{R}\text{, }&\gamma =0\text{ and }a=0\end{matrix}\right.
Share
Copied to clipboard
\gamma ^{2}=ar\cos(\frac{3025+76^{2}+93.812}{2\times 55\times 76})
Calculate 55 to the power of 2 and get 3025.
\gamma ^{2}=ar\cos(\frac{3025+5776+93.812}{2\times 55\times 76})
Calculate 76 to the power of 2 and get 5776.
\gamma ^{2}=ar\cos(\frac{8801+93.812}{2\times 55\times 76})
Add 3025 and 5776 to get 8801.
\gamma ^{2}=ar\cos(\frac{8894.812}{2\times 55\times 76})
Add 8801 and 93.812 to get 8894.812.
\gamma ^{2}=ar\cos(\frac{8894.812}{110\times 76})
Multiply 2 and 55 to get 110.
\gamma ^{2}=ar\cos(\frac{8894.812}{8360})
Multiply 110 and 76 to get 8360.
\gamma ^{2}=ar\cos(\frac{8894812}{8360000})
Expand \frac{8894.812}{8360} by multiplying both numerator and the denominator by 1000.
\gamma ^{2}=ar\cos(\frac{117037}{110000})
Reduce the fraction \frac{8894812}{8360000} to lowest terms by extracting and canceling out 76.
ar\cos(\frac{117037}{110000})=\gamma ^{2}
Swap sides so that all variable terms are on the left hand side.
\cos(\frac{117037}{110000})ra=\gamma ^{2}
The equation is in standard form.
\frac{\cos(\frac{117037}{110000})ra}{\cos(\frac{117037}{110000})r}=\frac{\gamma ^{2}}{\cos(\frac{117037}{110000})r}
Divide both sides by r\cos(\frac{117037}{110000}).
a=\frac{\gamma ^{2}}{\cos(\frac{117037}{110000})r}
Dividing by r\cos(\frac{117037}{110000}) undoes the multiplication by r\cos(\frac{117037}{110000}).
\gamma ^{2}=ar\cos(\frac{3025+76^{2}+93.812}{2\times 55\times 76})
Calculate 55 to the power of 2 and get 3025.
\gamma ^{2}=ar\cos(\frac{3025+5776+93.812}{2\times 55\times 76})
Calculate 76 to the power of 2 and get 5776.
\gamma ^{2}=ar\cos(\frac{8801+93.812}{2\times 55\times 76})
Add 3025 and 5776 to get 8801.
\gamma ^{2}=ar\cos(\frac{8894.812}{2\times 55\times 76})
Add 8801 and 93.812 to get 8894.812.
\gamma ^{2}=ar\cos(\frac{8894.812}{110\times 76})
Multiply 2 and 55 to get 110.
\gamma ^{2}=ar\cos(\frac{8894.812}{8360})
Multiply 110 and 76 to get 8360.
\gamma ^{2}=ar\cos(\frac{8894812}{8360000})
Expand \frac{8894.812}{8360} by multiplying both numerator and the denominator by 1000.
\gamma ^{2}=ar\cos(\frac{117037}{110000})
Reduce the fraction \frac{8894812}{8360000} to lowest terms by extracting and canceling out 76.
ar\cos(\frac{117037}{110000})=\gamma ^{2}
Swap sides so that all variable terms are on the left hand side.
\cos(\frac{117037}{110000})ar=\gamma ^{2}
The equation is in standard form.
\frac{\cos(\frac{117037}{110000})ar}{\cos(\frac{117037}{110000})a}=\frac{\gamma ^{2}}{\cos(\frac{117037}{110000})a}
Divide both sides by a\cos(\frac{117037}{110000}).
r=\frac{\gamma ^{2}}{\cos(\frac{117037}{110000})a}
Dividing by a\cos(\frac{117037}{110000}) undoes the multiplication by a\cos(\frac{117037}{110000}).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}