Solve for γ (complex solution)
\gamma =\sqrt{1909}-43\approx 0.69210455
\gamma =-\left(\sqrt{1909}+43\right)\approx -86.69210455
Solve for γ
\gamma =\sqrt{1909}-43\approx 0.69210455
\gamma =-\sqrt{1909}-43\approx -86.69210455
Share
Copied to clipboard
\gamma ^{2}+86\gamma -60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\gamma =\frac{-86±\sqrt{86^{2}-4\left(-60\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 86 for b, and -60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\gamma =\frac{-86±\sqrt{7396-4\left(-60\right)}}{2}
Square 86.
\gamma =\frac{-86±\sqrt{7396+240}}{2}
Multiply -4 times -60.
\gamma =\frac{-86±\sqrt{7636}}{2}
Add 7396 to 240.
\gamma =\frac{-86±2\sqrt{1909}}{2}
Take the square root of 7636.
\gamma =\frac{2\sqrt{1909}-86}{2}
Now solve the equation \gamma =\frac{-86±2\sqrt{1909}}{2} when ± is plus. Add -86 to 2\sqrt{1909}.
\gamma =\sqrt{1909}-43
Divide -86+2\sqrt{1909} by 2.
\gamma =\frac{-2\sqrt{1909}-86}{2}
Now solve the equation \gamma =\frac{-86±2\sqrt{1909}}{2} when ± is minus. Subtract 2\sqrt{1909} from -86.
\gamma =-\sqrt{1909}-43
Divide -86-2\sqrt{1909} by 2.
\gamma =\sqrt{1909}-43 \gamma =-\sqrt{1909}-43
The equation is now solved.
\gamma ^{2}+86\gamma -60=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\gamma ^{2}+86\gamma -60-\left(-60\right)=-\left(-60\right)
Add 60 to both sides of the equation.
\gamma ^{2}+86\gamma =-\left(-60\right)
Subtracting -60 from itself leaves 0.
\gamma ^{2}+86\gamma =60
Subtract -60 from 0.
\gamma ^{2}+86\gamma +43^{2}=60+43^{2}
Divide 86, the coefficient of the x term, by 2 to get 43. Then add the square of 43 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\gamma ^{2}+86\gamma +1849=60+1849
Square 43.
\gamma ^{2}+86\gamma +1849=1909
Add 60 to 1849.
\left(\gamma +43\right)^{2}=1909
Factor \gamma ^{2}+86\gamma +1849. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\gamma +43\right)^{2}}=\sqrt{1909}
Take the square root of both sides of the equation.
\gamma +43=\sqrt{1909} \gamma +43=-\sqrt{1909}
Simplify.
\gamma =\sqrt{1909}-43 \gamma =-\sqrt{1909}-43
Subtract 43 from both sides of the equation.
\gamma ^{2}+86\gamma -60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\gamma =\frac{-86±\sqrt{86^{2}-4\left(-60\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 86 for b, and -60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\gamma =\frac{-86±\sqrt{7396-4\left(-60\right)}}{2}
Square 86.
\gamma =\frac{-86±\sqrt{7396+240}}{2}
Multiply -4 times -60.
\gamma =\frac{-86±\sqrt{7636}}{2}
Add 7396 to 240.
\gamma =\frac{-86±2\sqrt{1909}}{2}
Take the square root of 7636.
\gamma =\frac{2\sqrt{1909}-86}{2}
Now solve the equation \gamma =\frac{-86±2\sqrt{1909}}{2} when ± is plus. Add -86 to 2\sqrt{1909}.
\gamma =\sqrt{1909}-43
Divide -86+2\sqrt{1909} by 2.
\gamma =\frac{-2\sqrt{1909}-86}{2}
Now solve the equation \gamma =\frac{-86±2\sqrt{1909}}{2} when ± is minus. Subtract 2\sqrt{1909} from -86.
\gamma =-\sqrt{1909}-43
Divide -86-2\sqrt{1909} by 2.
\gamma =\sqrt{1909}-43 \gamma =-\sqrt{1909}-43
The equation is now solved.
\gamma ^{2}+86\gamma -60=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\gamma ^{2}+86\gamma -60-\left(-60\right)=-\left(-60\right)
Add 60 to both sides of the equation.
\gamma ^{2}+86\gamma =-\left(-60\right)
Subtracting -60 from itself leaves 0.
\gamma ^{2}+86\gamma =60
Subtract -60 from 0.
\gamma ^{2}+86\gamma +43^{2}=60+43^{2}
Divide 86, the coefficient of the x term, by 2 to get 43. Then add the square of 43 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\gamma ^{2}+86\gamma +1849=60+1849
Square 43.
\gamma ^{2}+86\gamma +1849=1909
Add 60 to 1849.
\left(\gamma +43\right)^{2}=1909
Factor \gamma ^{2}+86\gamma +1849. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\gamma +43\right)^{2}}=\sqrt{1909}
Take the square root of both sides of the equation.
\gamma +43=\sqrt{1909} \gamma +43=-\sqrt{1909}
Simplify.
\gamma =\sqrt{1909}-43 \gamma =-\sqrt{1909}-43
Subtract 43 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}