Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{\gamma }{s_{n}\theta -1}\text{, }&\theta =0\text{ or }s_{n}\neq \frac{1}{\theta }\\a\in \mathrm{C}\text{, }&\gamma =0\text{ and }s_{n}=\frac{1}{\theta }\text{ and }\theta \neq 0\end{matrix}\right.
Solve for s_n (complex solution)
\left\{\begin{matrix}s_{n}=\frac{a-\gamma }{a\theta }\text{, }&a\neq 0\text{ and }\theta \neq 0\\s_{n}\in \mathrm{C}\text{, }&\left(\gamma =0\text{ and }a=0\right)\text{ or }\left(a=\gamma \text{ and }\theta =0\text{ and }\gamma \neq 0\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{\gamma }{s_{n}\theta -1}\text{, }&\theta =0\text{ or }s_{n}\neq \frac{1}{\theta }\\a\in \mathrm{R}\text{, }&\gamma =0\text{ and }s_{n}=\frac{1}{\theta }\text{ and }\theta \neq 0\end{matrix}\right.
Solve for s_n
\left\{\begin{matrix}s_{n}=\frac{a-\gamma }{a\theta }\text{, }&a\neq 0\text{ and }\theta \neq 0\\s_{n}\in \mathrm{R}\text{, }&\left(\gamma =0\text{ and }a=0\right)\text{ or }\left(a=\gamma \text{ and }\theta =0\text{ and }\gamma \neq 0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
\gamma =a-as_{n}\theta
Use the distributive property to multiply a by 1-s_{n}\theta .
a-as_{n}\theta =\gamma
Swap sides so that all variable terms are on the left hand side.
\left(1-s_{n}\theta \right)a=\gamma
Combine all terms containing a.
\frac{\left(1-s_{n}\theta \right)a}{1-s_{n}\theta }=\frac{\gamma }{1-s_{n}\theta }
Divide both sides by 1-s_{n}\theta .
a=\frac{\gamma }{1-s_{n}\theta }
Dividing by 1-s_{n}\theta undoes the multiplication by 1-s_{n}\theta .
\gamma =a-as_{n}\theta
Use the distributive property to multiply a by 1-s_{n}\theta .
a-as_{n}\theta =\gamma
Swap sides so that all variable terms are on the left hand side.
-as_{n}\theta =\gamma -a
Subtract a from both sides.
\left(-a\theta \right)s_{n}=\gamma -a
The equation is in standard form.
\frac{\left(-a\theta \right)s_{n}}{-a\theta }=\frac{\gamma -a}{-a\theta }
Divide both sides by -a\theta .
s_{n}=\frac{\gamma -a}{-a\theta }
Dividing by -a\theta undoes the multiplication by -a\theta .
s_{n}=-\frac{\gamma -a}{a\theta }
Divide \gamma -a by -a\theta .
\gamma =a-as_{n}\theta
Use the distributive property to multiply a by 1-s_{n}\theta .
a-as_{n}\theta =\gamma
Swap sides so that all variable terms are on the left hand side.
\left(1-s_{n}\theta \right)a=\gamma
Combine all terms containing a.
\frac{\left(1-s_{n}\theta \right)a}{1-s_{n}\theta }=\frac{\gamma }{1-s_{n}\theta }
Divide both sides by 1-s_{n}\theta .
a=\frac{\gamma }{1-s_{n}\theta }
Dividing by 1-s_{n}\theta undoes the multiplication by 1-s_{n}\theta .
\gamma =a-as_{n}\theta
Use the distributive property to multiply a by 1-s_{n}\theta .
a-as_{n}\theta =\gamma
Swap sides so that all variable terms are on the left hand side.
-as_{n}\theta =\gamma -a
Subtract a from both sides.
\left(-a\theta \right)s_{n}=\gamma -a
The equation is in standard form.
\frac{\left(-a\theta \right)s_{n}}{-a\theta }=\frac{\gamma -a}{-a\theta }
Divide both sides by -a\theta .
s_{n}=\frac{\gamma -a}{-a\theta }
Dividing by -a\theta undoes the multiplication by -a\theta .
s_{n}=-\frac{\gamma -a}{a\theta }
Divide \gamma -a by -a\theta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}