Evaluate
3\left(y-30\right)\left(y-10\right)
Differentiate w.r.t. y
6\left(y-20\right)
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}y}(\left(30-y\right)^{2}y)
Multiply 30-y and 30-y to get \left(30-y\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(900-60y+y^{2}\right)y)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(30-y\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(900y-60y^{2}+y^{3})
Use the distributive property to multiply 900-60y+y^{2} by y.
900y^{1-1}+2\left(-60\right)y^{2-1}+3y^{3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
900y^{0}+2\left(-60\right)y^{2-1}+3y^{3-1}
Subtract 1 from 1.
900y^{0}-120y^{2-1}+3y^{3-1}
Multiply 2 times -60.
900y^{0}-120y^{1}+3y^{3-1}
Subtract 1 from 2.
900y^{0}-120y^{1}+3y^{2}
Subtract 1 from 3.
900y^{0}-120y+3y^{2}
For any term t, t^{1}=t.
900\times 1-120y+3y^{2}
For any term t except 0, t^{0}=1.
900-120y+3y^{2}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}