Evaluate
-\frac{6}{y^{7}}-\frac{16}{y^{9}}
Differentiate w.r.t. y
\frac{42}{y^{8}}+\frac{144}{y^{10}}
Share
Copied to clipboard
\frac{y^{8}\frac{\mathrm{d}}{\mathrm{d}y}(y^{2}+2)-\left(y^{2}+2\right)\frac{\mathrm{d}}{\mathrm{d}y}(y^{8})}{\left(y^{8}\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{y^{8}\times 2y^{2-1}-\left(y^{2}+2\right)\times 8y^{8-1}}{\left(y^{8}\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{y^{8}\times 2y^{1}-\left(y^{2}+2\right)\times 8y^{7}}{\left(y^{8}\right)^{2}}
Do the arithmetic.
\frac{y^{8}\times 2y^{1}-\left(y^{2}\times 8y^{7}+2\times 8y^{7}\right)}{\left(y^{8}\right)^{2}}
Expand using distributive property.
\frac{2y^{8+1}-\left(8y^{2+7}+2\times 8y^{7}\right)}{\left(y^{8}\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{2y^{9}-\left(8y^{9}+16y^{7}\right)}{\left(y^{8}\right)^{2}}
Do the arithmetic.
\frac{2y^{9}-8y^{9}-16y^{7}}{\left(y^{8}\right)^{2}}
Remove unnecessary parentheses.
\frac{\left(2-8\right)y^{9}-16y^{7}}{\left(y^{8}\right)^{2}}
Combine like terms.
\frac{-6y^{9}-16y^{7}}{\left(y^{8}\right)^{2}}
Subtract 8 from 2.
\frac{2y^{7}\left(-3y^{2}-8y^{0}\right)}{\left(y^{8}\right)^{2}}
Factor out 2y^{7}.
\frac{2y^{7}\left(-3y^{2}-8y^{0}\right)}{y^{8\times 2}}
To raise a power to another power, multiply the exponents.
\frac{2y^{7}\left(-3y^{2}-8y^{0}\right)}{y^{16}}
Multiply 8 times 2.
\frac{2\left(-3y^{2}-8y^{0}\right)}{y^{16-7}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{2\left(-3y^{2}-8y^{0}\right)}{y^{9}}
Subtract 7 from 16.
\frac{2\left(-3y^{2}-8\times 1\right)}{y^{9}}
For any term t except 0, t^{0}=1.
\frac{2\left(-3y^{2}-8\right)}{y^{9}}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}