Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x^{3}+2x^{2}\right)x}{x}-\frac{1}{x})
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x^{3}+2x^{2} times \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x^{3}+2x^{2}\right)x-1}{x})
Since \frac{\left(3x^{3}+2x^{2}\right)x}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x^{4}+2x^{3}-1}{x})
Do the multiplications in \left(3x^{3}+2x^{2}\right)x-1.
\frac{x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{4}+2x^{3}-1)-\left(3x^{4}+2x^{3}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})}{\left(x^{1}\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{x^{1}\left(4\times 3x^{4-1}+3\times 2x^{3-1}\right)-\left(3x^{4}+2x^{3}-1\right)x^{1-1}}{\left(x^{1}\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{x^{1}\left(12x^{3}+6x^{2}\right)-\left(3x^{4}+2x^{3}-1\right)x^{0}}{\left(x^{1}\right)^{2}}
Simplify.
\frac{x^{1}\times 12x^{3}+x^{1}\times 6x^{2}-\left(3x^{4}+2x^{3}-1\right)x^{0}}{\left(x^{1}\right)^{2}}
Multiply x^{1} times 12x^{3}+6x^{2}.
\frac{x^{1}\times 12x^{3}+x^{1}\times 6x^{2}-\left(3x^{4}x^{0}+2x^{3}x^{0}-x^{0}\right)}{\left(x^{1}\right)^{2}}
Multiply 3x^{4}+2x^{3}-1 times x^{0}.
\frac{12x^{1+3}+6x^{1+2}-\left(3x^{4}+2x^{3}-x^{0}\right)}{\left(x^{1}\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{12x^{4}+6x^{3}-\left(3x^{4}+2x^{3}-x^{0}\right)}{\left(x^{1}\right)^{2}}
Simplify.
\frac{9x^{4}+4x^{3}-\left(-x^{0}\right)}{\left(x^{1}\right)^{2}}
Combine like terms.
\frac{9x^{4}+4x^{3}-\left(-x^{0}\right)}{x^{2}}
For any term t, t^{1}=t.
\frac{9x^{4}+4x^{3}-\left(-1\right)}{x^{2}}
For any term t except 0, t^{0}=1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x^{3}+2x^{2}\right)x}{x}-\frac{1}{x})
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x^{3}+2x^{2} times \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x^{3}+2x^{2}\right)x-1}{x})
Since \frac{\left(3x^{3}+2x^{2}\right)x}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x^{4}+2x^{3}-1}{x})
Do the multiplications in \left(3x^{3}+2x^{2}\right)x-1.
\left(3x^{4}+2x^{3}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})+\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{4}+2x^{3}-1)
For any two differentiable functions, the derivative of the product of two functions is the first function times the derivative of the second plus the second function times the derivative of the first.
\left(3x^{4}+2x^{3}-1\right)\left(-1\right)x^{-1-1}+\frac{1}{x}\left(4\times 3x^{4-1}+3\times 2x^{3-1}\right)
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(3x^{4}+2x^{3}-1\right)\left(-1\right)x^{-2}+\frac{1}{x}\left(12x^{3}+6x^{2}\right)
Simplify.
3x^{4}\left(-1\right)x^{-2}+2x^{3}\left(-1\right)x^{-2}-\left(-x^{-2}\right)+\frac{1}{x}\left(12x^{3}+6x^{2}\right)
Multiply 3x^{4}+2x^{3}-1 times -x^{-2}.
3x^{4}\left(-1\right)x^{-2}+2x^{3}\left(-1\right)x^{-2}-\left(-x^{-2}\right)+\frac{1}{x}\times 12x^{3}+\frac{1}{x}\times 6x^{2}
Multiply \frac{1}{x} times 12x^{3}+6x^{2}.
-3x^{4-2}-2x^{3-2}-\left(-x^{-2}\right)+12x^{-1+3}+6x^{-1+2}
To multiply powers of the same base, add their exponents.
-3x^{2}-2x^{1}+x^{-2}+12x^{2}+6x^{1}
Simplify.
9x^{2}+4x^{1}+x^{-2}
Combine like terms.
9x^{2}+4x+x^{-2}
For any term t, t^{1}=t.