Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(-4x\left(\left(x^{2}\right)^{2}+8x^{2}+16\right))
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+4\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-4x\left(x^{4}+8x^{2}+16\right))
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\mathrm{d}}{\mathrm{d}x}(-4x^{5}-32x^{3}-64x)
Use the distributive property to multiply -4x by x^{4}+8x^{2}+16.
5\left(-4\right)x^{5-1}+3\left(-32\right)x^{3-1}-64x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-20x^{5-1}+3\left(-32\right)x^{3-1}-64x^{1-1}
Multiply 5 times -4.
-20x^{4}+3\left(-32\right)x^{3-1}-64x^{1-1}
Subtract 1 from 5.
-20x^{4}-96x^{3-1}-64x^{1-1}
Multiply 3 times -32.
-20x^{4}-96x^{2}-64x^{1-1}
Subtract 1 from 3.
-20x^{4}-96x^{2}-64x^{0}
Subtract 1 from 1.
-20x^{4}-96x^{2}-64
For any term t except 0, t^{0}=1.