Evaluate
\frac{\cos(x)sign(\sin(x))\left(16\left(\cos(x)\right)^{2}-8\cos(x)+5\right)+4\sin(x)|\sin(x)|\left(-4\cos(x)+1\right)}{\sqrt{16\left(\cos(x)\right)^{2}-8\cos(x)+5}}
Differentiate w.r.t. x
\frac{4\left(-128\sin(x)sign(\sin(x))\left(\cos(x)\right)^{4}+96\sin(x)sign(\sin(x))\left(\cos(x)\right)^{3}-64|\sin(x)|\left(\cos(x)\right)^{4}-56\sin(x)sign(\sin(x))\left(\cos(x)\right)^{2}+48|\sin(x)|\left(\cos(x)\right)^{3}+16|\sin(x)|\left(\sin(x)\right)^{2}-28|\sin(x)|\left(\cos(x)\right)^{2}+5\sin(2x)sign(\sin(x))+5\cos(x)|\sin(x)|\right)-|\sin(x)|\left(16\left(\cos(x)\right)^{2}-8\cos(x)+5\right)^{2}}{\left(16\left(\cos(x)\right)^{2}-8\cos(x)+5\right)^{\frac{3}{2}}}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}