Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{x^{4}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2}+3)-\left(-x^{2}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{4})}{\left(x^{4}\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{x^{4}\times 2\left(-1\right)x^{2-1}-\left(-x^{2}+3\right)\times 4x^{4-1}}{\left(x^{4}\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{x^{4}\left(-2\right)x^{1}-\left(-x^{2}+3\right)\times 4x^{3}}{\left(x^{4}\right)^{2}}
Do the arithmetic.
\frac{x^{4}\left(-2\right)x^{1}-\left(-x^{2}\times 4x^{3}+3\times 4x^{3}\right)}{\left(x^{4}\right)^{2}}
Expand using distributive property.
\frac{-2x^{4+1}-\left(-4x^{2+3}+3\times 4x^{3}\right)}{\left(x^{4}\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{-2x^{5}-\left(-4x^{5}+12x^{3}\right)}{\left(x^{4}\right)^{2}}
Do the arithmetic.
\frac{-2x^{5}-\left(-4x^{5}\right)-12x^{3}}{\left(x^{4}\right)^{2}}
Remove unnecessary parentheses.
\frac{\left(-2-\left(-4\right)\right)x^{5}-12x^{3}}{\left(x^{4}\right)^{2}}
Combine like terms.
\frac{2x^{5}-12x^{3}}{\left(x^{4}\right)^{2}}
Subtract -4 from -2.
\frac{2x^{3}\left(x^{2}-6x^{0}\right)}{\left(x^{4}\right)^{2}}
Factor out 2x^{3}.
\frac{2x^{3}\left(x^{2}-6x^{0}\right)}{x^{4\times 2}}
To raise a power to another power, multiply the exponents.
\frac{2x^{3}\left(x^{2}-6x^{0}\right)}{x^{8}}
Multiply 4 times 2.
\frac{2\left(x^{2}-6x^{0}\right)}{x^{8-3}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{2\left(x^{2}-6x^{0}\right)}{x^{5}}
Subtract 3 from 8.
\frac{2\left(x^{2}-6\times 1\right)}{x^{5}}
For any term t except 0, t^{0}=1.
\frac{2\left(x^{2}-6\right)}{x^{5}}
For any term t, t\times 1=t and 1t=t.