Evaluate
\frac{20}{x^{5}}-\frac{16}{x^{9}}
Differentiate w.r.t. x
-\frac{100}{x^{6}}+\frac{144}{x^{10}}
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{x^{8}}-\frac{5x^{4}}{x^{8}}+3)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{8} and x^{4} is x^{8}. Multiply \frac{5}{x^{4}} times \frac{x^{4}}{x^{4}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2-5x^{4}}{x^{8}}+3)
Since \frac{2}{x^{8}} and \frac{5x^{4}}{x^{8}} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2-5x^{4}}{x^{8}}+\frac{3x^{8}}{x^{8}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x^{8}}{x^{8}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2-5x^{4}+3x^{8}}{x^{8}})
Since \frac{2-5x^{4}}{x^{8}} and \frac{3x^{8}}{x^{8}} have the same denominator, add them by adding their numerators.
\frac{x^{8}\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{4}+3x^{8}+2)-\left(-5x^{4}+3x^{8}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{8})}{\left(x^{8}\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{x^{8}\left(4\left(-5\right)x^{4-1}+8\times 3x^{8-1}\right)-\left(-5x^{4}+3x^{8}+2\right)\times 8x^{8-1}}{\left(x^{8}\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{x^{8}\left(-20x^{3}+24x^{7}\right)-\left(-5x^{4}+3x^{8}+2\right)\times 8x^{7}}{\left(x^{8}\right)^{2}}
Simplify.
\frac{x^{8}\left(-20\right)x^{3}+x^{8}\times 24x^{7}-\left(-5x^{4}+3x^{8}+2\right)\times 8x^{7}}{\left(x^{8}\right)^{2}}
Multiply x^{8} times -20x^{3}+24x^{7}.
\frac{x^{8}\left(-20\right)x^{3}+x^{8}\times 24x^{7}-\left(-5x^{4}\times 8x^{7}+3x^{8}\times 8x^{7}+2\times 8x^{7}\right)}{\left(x^{8}\right)^{2}}
Multiply -5x^{4}+3x^{8}+2 times 8x^{7}.
\frac{-20x^{8+3}+24x^{8+7}-\left(-5\times 8x^{4+7}+3\times 8x^{8+7}+2\times 8x^{7}\right)}{\left(x^{8}\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{-20x^{11}+24x^{15}-\left(-40x^{11}+24x^{15}+16x^{7}\right)}{\left(x^{8}\right)^{2}}
Simplify.
\frac{20x^{11}-16x^{3}}{\left(x^{8}\right)^{2}}
Combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}