Solve for a
a=ke^{kt}
Share
Copied to clipboard
-ae^{-kt}=-k-\frac{\mathrm{d}}{\mathrm{d}t}(y)
Subtract \frac{\mathrm{d}}{\mathrm{d}t}(y) from both sides.
\left(-\frac{1}{e^{kt}}\right)a=-k
The equation is in standard form.
\frac{\left(-\frac{1}{e^{kt}}\right)a}{-\frac{1}{e^{kt}}}=-\frac{k}{-\frac{1}{e^{kt}}}
Divide both sides by -e^{-kt}.
a=-\frac{k}{-\frac{1}{e^{kt}}}
Dividing by -e^{-kt} undoes the multiplication by -e^{-kt}.
a=ke^{kt}
Divide -k by -e^{-kt}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}