Type a math problem

This site uses cookies for analytics, personalized content and ads. By continuing to browse this site, you agree to this use. Learn more

Type a math problem

Evaluate

-\frac{640}{93}\approx -6.88172043

$−93640 ≈−6.88172043$

Solution Steps

\frac{\frac{8}{5}}{\frac{2}{25}-\frac{5}{16}}

$252 −165 58 $

Least common multiple of 25 and 16 is 400. Convert \frac{2}{25}=0.08 and \frac{5}{16}=0.3125 to fractions with denominator 400.

Least common multiple of $25$ and $16$ is $400$. Convert $252 =0.08$ and $165 =0.3125$ to fractions with denominator $400$.

\frac{\frac{8}{5}}{\frac{32}{400}-\frac{125}{400}}\approx -6.88172043

$40032 −400125 58 ≈−6.88172043$

Since \frac{32}{400}=0.08 and \frac{125}{400}=0.3125 have the same denominator, subtract them by subtracting their numerators.

Since $40032 =0.08$ and $400125 =0.3125$ have the same denominator, subtract them by subtracting their numerators.

\frac{\frac{8}{5}}{\frac{32-125}{400}}\approx -6.88172043

$40032−125 58 ≈−6.88172043$

Subtract 125 from 32 to get -93.

Subtract $125$ from $32$ to get $−93$.

\frac{\frac{8}{5}}{-\frac{93}{400}}\approx -6.88172043

$−40093 58 ≈−6.88172043$

Divide \frac{8}{5}=1.6 by -\frac{93}{400}=-0.2325 by multiplying \frac{8}{5}=1.6 by the reciprocal of -\frac{93}{400}=-0.2325.

Divide $58 =1.6$ by $−40093 =−0.2325$ by multiplying $58 =1.6$ by the reciprocal of $−40093 =−0.2325$.

\frac{8}{5}\left(-\frac{400}{93}\right)\approx -6.88172043

$58 (−93400 )≈−6.88172043$

Multiply \frac{8}{5}=1.6 times -\frac{400}{93}\approx -4.301075269 by multiplying numerator times numerator and denominator times denominator.

Multiply $58 =1.6$ times $−93400 ≈−4.301075269$ by multiplying numerator times numerator and denominator times denominator.

\frac{8\left(-400\right)}{5\times 93}\approx -6.88172043

$5×938(−400) ≈−6.88172043$

Do the multiplications in the fraction \frac{8\left(-400\right)}{5\times 93}\approx -6.88172043.

Do the multiplications in the fraction $5×938(−400) ≈−6.88172043$.

\frac{-3200}{465}\approx -6.88172043

$465−3200 ≈−6.88172043$

Reduce the fraction \frac{-3200}{465}\approx -6.88172043 to lowest terms by extracting and canceling out 5.

Reduce the fraction $465−3200 ≈−6.88172043$ to lowest terms by extracting and canceling out $5$.

-\frac{640}{93}\approx -6.88172043

$−93640 ≈−6.88172043$

Giving is as easy as 1, 2, 3

Get 1,000 points to donate to a school of your choice when you join Give With Bing

Share

Copy

Copied to clipboard

\frac{\frac{8}{5}}{\frac{32}{400}-\frac{125}{400}}\approx -6.88172043

Least common multiple of 25 and 16 is 400. Convert \frac{2}{25}=0.08 and \frac{5}{16}=0.3125 to fractions with denominator 400.

\frac{\frac{8}{5}}{\frac{32-125}{400}}\approx -6.88172043

Since \frac{32}{400}=0.08 and \frac{125}{400}=0.3125 have the same denominator, subtract them by subtracting their numerators.

\frac{\frac{8}{5}}{-\frac{93}{400}}\approx -6.88172043

Subtract 125 from 32 to get -93.

\frac{8}{5}\left(-\frac{400}{93}\right)\approx -6.88172043

Divide \frac{8}{5}=1.6 by -\frac{93}{400}=-0.2325 by multiplying \frac{8}{5}=1.6 by the reciprocal of -\frac{93}{400}=-0.2325.

\frac{8\left(-400\right)}{5\times 93}\approx -6.88172043

Multiply \frac{8}{5}=1.6 times -\frac{400}{93}\approx -4.301075269 by multiplying numerator times numerator and denominator times denominator.

\frac{-3200}{465}\approx -6.88172043

Do the multiplications in the fraction \frac{8\left(-400\right)}{5\times 93}\approx -6.88172043.

-\frac{640}{93}\approx -6.88172043

Reduce the fraction \frac{-3200}{465}\approx -6.88172043 to lowest terms by extracting and canceling out 5.

Examples

Quadratic equation

{ x } ^ { 2 } - 4 x - 5 = 0

$x_{2}−4x−5=0$

Trigonometry

4 \sin \theta \cos \theta = 2 \sin \theta

$4sinθcosθ=2sinθ$

Linear equation

y = 3x + 4

$y=3x+4$

Arithmetic

699 * 533

$699∗533$

Matrix

\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { - 1 } & { 1 } & { 5 } \end{array} \right]

$[25 34 ][2−1 01 35 ]$

Simultaneous equation

\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.

${8x+2y=467x+3y=47 $

Differentiation

\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }

$dxd (x−5)(3x_{2}−2) $

Integration

\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x

$∫_{0}xe_{−x_{2}}dx$

Limits

\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}

$x→−3lim x_{2}+2x−3x_{2}−9 $

Back to top