Evaluate

-\frac{640}{93}\approx -6.88172043

$−93640 ≈−6.88172043$

Factor

\frac{{(-1)} \cdot 2 ^ {7} \cdot 5}{3 \cdot 31} \approx -6.88172043

$3⋅31(−1)⋅2_{7}⋅5 ≈−6.88172043$

Copy

Copied to clipboard

\frac{\frac{8}{5}}{\frac{32}{400}-\frac{125}{400}}

Least common multiple of 25 and 16 is 400. Convert \frac{2}{25} and \frac{5}{16} to fractions with denominator 400.

\frac{\frac{8}{5}}{\frac{32-125}{400}}

Since \frac{32}{400} and \frac{125}{400} have the same denominator, subtract them by subtracting their numerators.

\frac{\frac{8}{5}}{-\frac{93}{400}}

Subtract 125 from 32 to get -93.

\frac{8}{5}\left(-\frac{400}{93}\right)

Divide \frac{8}{5} by -\frac{93}{400} by multiplying \frac{8}{5} by the reciprocal of -\frac{93}{400}.

\frac{8\left(-400\right)}{5\times 93}

Multiply \frac{8}{5} times -\frac{400}{93} by multiplying numerator times numerator and denominator times denominator.

\frac{-3200}{465}

Do the multiplications in the fraction \frac{8\left(-400\right)}{5\times 93}.

-\frac{640}{93}

Reduce the fraction \frac{-3200}{465} to lowest terms by extracting and canceling out 5.

Examples

Quadratic equation

{ x } ^ { 2 } - 4 x - 5 = 0

$x_{2}−4x−5=0$

Trigonometry

4 \sin \theta \cos \theta = 2 \sin \theta

$4sinθcosθ=2sinθ$

Linear equation

y = 3x + 4

$y=3x+4$

Arithmetic

699 * 533

$699∗533$

Matrix

\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]

$[25 34 ][2−1 01 35 ]$

Simultaneous equation

\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.

${8x+2y=467x+3y=47 $

Differentiation

\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }

$dxd (x−5)(3x_{2}−2) $

Integration

\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x

$∫_{0}xe_{−x_{2}}dx$

Limits

\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}

$x→−3lim x_{2}+2x−3x_{2}−9 $