Solve for y
y=-1
y=4
Graph
Share
Copied to clipboard
\left(y-5\right)\left(y-5\right)+\left(y-5\right)\left(y-3\right)\left(-1\right)=\left(y-3\right)\left(y-2\right)
Variable y cannot be equal to any of the values 3,5 since division by zero is not defined. Multiply both sides of the equation by \left(y-5\right)\left(y-3\right), the least common multiple of y-3,y-5.
\left(y-5\right)^{2}+\left(y-5\right)\left(y-3\right)\left(-1\right)=\left(y-3\right)\left(y-2\right)
Multiply y-5 and y-5 to get \left(y-5\right)^{2}.
y^{2}-10y+25+\left(y-5\right)\left(y-3\right)\left(-1\right)=\left(y-3\right)\left(y-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-5\right)^{2}.
y^{2}-10y+25+\left(y^{2}-8y+15\right)\left(-1\right)=\left(y-3\right)\left(y-2\right)
Use the distributive property to multiply y-5 by y-3 and combine like terms.
y^{2}-10y+25-y^{2}+8y-15=\left(y-3\right)\left(y-2\right)
Use the distributive property to multiply y^{2}-8y+15 by -1.
-10y+25+8y-15=\left(y-3\right)\left(y-2\right)
Combine y^{2} and -y^{2} to get 0.
-2y+25-15=\left(y-3\right)\left(y-2\right)
Combine -10y and 8y to get -2y.
-2y+10=\left(y-3\right)\left(y-2\right)
Subtract 15 from 25 to get 10.
-2y+10=y^{2}-5y+6
Use the distributive property to multiply y-3 by y-2 and combine like terms.
-2y+10-y^{2}=-5y+6
Subtract y^{2} from both sides.
-2y+10-y^{2}+5y=6
Add 5y to both sides.
3y+10-y^{2}=6
Combine -2y and 5y to get 3y.
3y+10-y^{2}-6=0
Subtract 6 from both sides.
3y+4-y^{2}=0
Subtract 6 from 10 to get 4.
-y^{2}+3y+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 3 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-3±\sqrt{9-4\left(-1\right)\times 4}}{2\left(-1\right)}
Square 3.
y=\frac{-3±\sqrt{9+4\times 4}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-3±\sqrt{9+16}}{2\left(-1\right)}
Multiply 4 times 4.
y=\frac{-3±\sqrt{25}}{2\left(-1\right)}
Add 9 to 16.
y=\frac{-3±5}{2\left(-1\right)}
Take the square root of 25.
y=\frac{-3±5}{-2}
Multiply 2 times -1.
y=\frac{2}{-2}
Now solve the equation y=\frac{-3±5}{-2} when ± is plus. Add -3 to 5.
y=-1
Divide 2 by -2.
y=-\frac{8}{-2}
Now solve the equation y=\frac{-3±5}{-2} when ± is minus. Subtract 5 from -3.
y=4
Divide -8 by -2.
y=-1 y=4
The equation is now solved.
\left(y-5\right)\left(y-5\right)+\left(y-5\right)\left(y-3\right)\left(-1\right)=\left(y-3\right)\left(y-2\right)
Variable y cannot be equal to any of the values 3,5 since division by zero is not defined. Multiply both sides of the equation by \left(y-5\right)\left(y-3\right), the least common multiple of y-3,y-5.
\left(y-5\right)^{2}+\left(y-5\right)\left(y-3\right)\left(-1\right)=\left(y-3\right)\left(y-2\right)
Multiply y-5 and y-5 to get \left(y-5\right)^{2}.
y^{2}-10y+25+\left(y-5\right)\left(y-3\right)\left(-1\right)=\left(y-3\right)\left(y-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-5\right)^{2}.
y^{2}-10y+25+\left(y^{2}-8y+15\right)\left(-1\right)=\left(y-3\right)\left(y-2\right)
Use the distributive property to multiply y-5 by y-3 and combine like terms.
y^{2}-10y+25-y^{2}+8y-15=\left(y-3\right)\left(y-2\right)
Use the distributive property to multiply y^{2}-8y+15 by -1.
-10y+25+8y-15=\left(y-3\right)\left(y-2\right)
Combine y^{2} and -y^{2} to get 0.
-2y+25-15=\left(y-3\right)\left(y-2\right)
Combine -10y and 8y to get -2y.
-2y+10=\left(y-3\right)\left(y-2\right)
Subtract 15 from 25 to get 10.
-2y+10=y^{2}-5y+6
Use the distributive property to multiply y-3 by y-2 and combine like terms.
-2y+10-y^{2}=-5y+6
Subtract y^{2} from both sides.
-2y+10-y^{2}+5y=6
Add 5y to both sides.
3y+10-y^{2}=6
Combine -2y and 5y to get 3y.
3y-y^{2}=6-10
Subtract 10 from both sides.
3y-y^{2}=-4
Subtract 10 from 6 to get -4.
-y^{2}+3y=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-y^{2}+3y}{-1}=-\frac{4}{-1}
Divide both sides by -1.
y^{2}+\frac{3}{-1}y=-\frac{4}{-1}
Dividing by -1 undoes the multiplication by -1.
y^{2}-3y=-\frac{4}{-1}
Divide 3 by -1.
y^{2}-3y=4
Divide -4 by -1.
y^{2}-3y+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-3y+\frac{9}{4}=4+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-3y+\frac{9}{4}=\frac{25}{4}
Add 4 to \frac{9}{4}.
\left(y-\frac{3}{2}\right)^{2}=\frac{25}{4}
Factor y^{2}-3y+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
y-\frac{3}{2}=\frac{5}{2} y-\frac{3}{2}=-\frac{5}{2}
Simplify.
y=4 y=-1
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}