Solve for y
y\leq -1
Graph
Share
Copied to clipboard
2\left(y-2\right)-3\left(4y-1\right)\geq 18-\left(8-y\right)
Multiply both sides of the equation by 18, the least common multiple of 9,6,18. Since 18 is positive, the inequality direction remains the same.
2y-4-3\left(4y-1\right)\geq 18-\left(8-y\right)
Use the distributive property to multiply 2 by y-2.
2y-4-12y+3\geq 18-\left(8-y\right)
Use the distributive property to multiply -3 by 4y-1.
-10y-4+3\geq 18-\left(8-y\right)
Combine 2y and -12y to get -10y.
-10y-1\geq 18-\left(8-y\right)
Add -4 and 3 to get -1.
-10y-1\geq 18-8-\left(-y\right)
To find the opposite of 8-y, find the opposite of each term.
-10y-1\geq 18-8+y
The opposite of -y is y.
-10y-1\geq 10+y
Subtract 8 from 18 to get 10.
-10y-1-y\geq 10
Subtract y from both sides.
-11y-1\geq 10
Combine -10y and -y to get -11y.
-11y\geq 10+1
Add 1 to both sides.
-11y\geq 11
Add 10 and 1 to get 11.
y\leq \frac{11}{-11}
Divide both sides by -11. Since -11 is negative, the inequality direction is changed.
y\leq -1
Divide 11 by -11 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}