Solve for x
x=19-7y
Solve for y
y=\frac{19-x}{7}
Graph
Share
Copied to clipboard
\frac{y-2}{1}=\frac{x-5}{-2-5}
Subtract 2 from 3 to get 1.
y-2=\frac{x-5}{-2-5}
Anything divided by one gives itself.
y-2=\frac{x-5}{-7}
Subtract 5 from -2 to get -7.
y-2=\frac{-x+5}{7}
Multiply both numerator and denominator by -1.
y-2=-\frac{1}{7}x+\frac{5}{7}
Divide each term of -x+5 by 7 to get -\frac{1}{7}x+\frac{5}{7}.
-\frac{1}{7}x+\frac{5}{7}=y-2
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{7}x=y-2-\frac{5}{7}
Subtract \frac{5}{7} from both sides.
-\frac{1}{7}x=y-\frac{19}{7}
Subtract \frac{5}{7} from -2 to get -\frac{19}{7}.
\frac{-\frac{1}{7}x}{-\frac{1}{7}}=\frac{y-\frac{19}{7}}{-\frac{1}{7}}
Multiply both sides by -7.
x=\frac{y-\frac{19}{7}}{-\frac{1}{7}}
Dividing by -\frac{1}{7} undoes the multiplication by -\frac{1}{7}.
x=19-7y
Divide y-\frac{19}{7} by -\frac{1}{7} by multiplying y-\frac{19}{7} by the reciprocal of -\frac{1}{7}.
\frac{y-2}{1}=\frac{x-5}{-2-5}
Subtract 2 from 3 to get 1.
y-2=\frac{x-5}{-2-5}
Anything divided by one gives itself.
y-2=\frac{x-5}{-7}
Subtract 5 from -2 to get -7.
y-2=\frac{-x+5}{7}
Multiply both numerator and denominator by -1.
y-2=-\frac{1}{7}x+\frac{5}{7}
Divide each term of -x+5 by 7 to get -\frac{1}{7}x+\frac{5}{7}.
y=-\frac{1}{7}x+\frac{5}{7}+2
Add 2 to both sides.
y=-\frac{1}{7}x+\frac{19}{7}
Add \frac{5}{7} and 2 to get \frac{19}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}