Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(y-1\right)\left(y+1\right)}{y+1}-\frac{8}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y-1 times \frac{y+1}{y+1}.
\frac{\frac{\left(y-1\right)\left(y+1\right)-8}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
Since \frac{\left(y-1\right)\left(y+1\right)}{y+1} and \frac{8}{y+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}+y-y-1-8}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
Do the multiplications in \left(y-1\right)\left(y+1\right)-8.
\frac{\frac{y^{2}-9}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
Combine like terms in y^{2}+y-y-1-8.
\frac{\left(y^{2}-9\right)\left(y^{2}+y\right)}{\left(y+1\right)\left(y^{2}-6y+9\right)}
Divide \frac{y^{2}-9}{y+1} by \frac{y^{2}-6y+9}{y^{2}+y} by multiplying \frac{y^{2}-9}{y+1} by the reciprocal of \frac{y^{2}-6y+9}{y^{2}+y}.
\frac{y\left(y-3\right)\left(y+1\right)\left(y+3\right)}{\left(y+1\right)\left(y-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{y\left(y+3\right)}{y-3}
Cancel out \left(y-3\right)\left(y+1\right) in both numerator and denominator.
\frac{y^{2}+3y}{y-3}
Expand the expression.
\frac{\frac{\left(y-1\right)\left(y+1\right)}{y+1}-\frac{8}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y-1 times \frac{y+1}{y+1}.
\frac{\frac{\left(y-1\right)\left(y+1\right)-8}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
Since \frac{\left(y-1\right)\left(y+1\right)}{y+1} and \frac{8}{y+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}+y-y-1-8}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
Do the multiplications in \left(y-1\right)\left(y+1\right)-8.
\frac{\frac{y^{2}-9}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
Combine like terms in y^{2}+y-y-1-8.
\frac{\left(y^{2}-9\right)\left(y^{2}+y\right)}{\left(y+1\right)\left(y^{2}-6y+9\right)}
Divide \frac{y^{2}-9}{y+1} by \frac{y^{2}-6y+9}{y^{2}+y} by multiplying \frac{y^{2}-9}{y+1} by the reciprocal of \frac{y^{2}-6y+9}{y^{2}+y}.
\frac{y\left(y-3\right)\left(y+1\right)\left(y+3\right)}{\left(y+1\right)\left(y-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{y\left(y+3\right)}{y-3}
Cancel out \left(y-3\right)\left(y+1\right) in both numerator and denominator.
\frac{y^{2}+3y}{y-3}
Expand the expression.