Evaluate
\frac{y\left(y+3\right)}{y-3}
Expand
\frac{y^{2}+3y}{y-3}
Graph
Share
Copied to clipboard
\frac{\frac{\left(y-1\right)\left(y+1\right)}{y+1}-\frac{8}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y-1 times \frac{y+1}{y+1}.
\frac{\frac{\left(y-1\right)\left(y+1\right)-8}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
Since \frac{\left(y-1\right)\left(y+1\right)}{y+1} and \frac{8}{y+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}+y-y-1-8}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
Do the multiplications in \left(y-1\right)\left(y+1\right)-8.
\frac{\frac{y^{2}-9}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
Combine like terms in y^{2}+y-y-1-8.
\frac{\left(y^{2}-9\right)\left(y^{2}+y\right)}{\left(y+1\right)\left(y^{2}-6y+9\right)}
Divide \frac{y^{2}-9}{y+1} by \frac{y^{2}-6y+9}{y^{2}+y} by multiplying \frac{y^{2}-9}{y+1} by the reciprocal of \frac{y^{2}-6y+9}{y^{2}+y}.
\frac{y\left(y-3\right)\left(y+1\right)\left(y+3\right)}{\left(y+1\right)\left(y-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{y\left(y+3\right)}{y-3}
Cancel out \left(y-3\right)\left(y+1\right) in both numerator and denominator.
\frac{y^{2}+3y}{y-3}
Expand the expression.
\frac{\frac{\left(y-1\right)\left(y+1\right)}{y+1}-\frac{8}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y-1 times \frac{y+1}{y+1}.
\frac{\frac{\left(y-1\right)\left(y+1\right)-8}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
Since \frac{\left(y-1\right)\left(y+1\right)}{y+1} and \frac{8}{y+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}+y-y-1-8}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
Do the multiplications in \left(y-1\right)\left(y+1\right)-8.
\frac{\frac{y^{2}-9}{y+1}}{\frac{y^{2}-6y+9}{y^{2}+y}}
Combine like terms in y^{2}+y-y-1-8.
\frac{\left(y^{2}-9\right)\left(y^{2}+y\right)}{\left(y+1\right)\left(y^{2}-6y+9\right)}
Divide \frac{y^{2}-9}{y+1} by \frac{y^{2}-6y+9}{y^{2}+y} by multiplying \frac{y^{2}-9}{y+1} by the reciprocal of \frac{y^{2}-6y+9}{y^{2}+y}.
\frac{y\left(y-3\right)\left(y+1\right)\left(y+3\right)}{\left(y+1\right)\left(y-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{y\left(y+3\right)}{y-3}
Cancel out \left(y-3\right)\left(y+1\right) in both numerator and denominator.
\frac{y^{2}+3y}{y-3}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}