Solve for x
x=\frac{-5y-29}{2}
Solve for y
y=\frac{-2x-29}{5}
Graph
Share
Copied to clipboard
\frac{y+5}{-7-\left(-5\right)}=\frac{x-\left(-2\right)}{3-\left(-2\right)}
The opposite of -5 is 5.
\frac{y+5}{-7+5}=\frac{x-\left(-2\right)}{3-\left(-2\right)}
The opposite of -5 is 5.
\frac{y+5}{-2}=\frac{x-\left(-2\right)}{3-\left(-2\right)}
Add -7 and 5 to get -2.
\frac{-y-5}{2}=\frac{x-\left(-2\right)}{3-\left(-2\right)}
Multiply both numerator and denominator by -1.
\frac{-y-5}{2}=\frac{x+2}{3-\left(-2\right)}
The opposite of -2 is 2.
\frac{-y-5}{2}=\frac{x+2}{3+2}
The opposite of -2 is 2.
\frac{-y-5}{2}=\frac{x+2}{5}
Add 3 and 2 to get 5.
-\frac{1}{2}y-\frac{5}{2}=\frac{x+2}{5}
Divide each term of -y-5 by 2 to get -\frac{1}{2}y-\frac{5}{2}.
-\frac{1}{2}y-\frac{5}{2}=\frac{1}{5}x+\frac{2}{5}
Divide each term of x+2 by 5 to get \frac{1}{5}x+\frac{2}{5}.
\frac{1}{5}x+\frac{2}{5}=-\frac{1}{2}y-\frac{5}{2}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{5}x=-\frac{1}{2}y-\frac{5}{2}-\frac{2}{5}
Subtract \frac{2}{5} from both sides.
\frac{1}{5}x=-\frac{1}{2}y-\frac{29}{10}
Subtract \frac{2}{5} from -\frac{5}{2} to get -\frac{29}{10}.
\frac{1}{5}x=-\frac{y}{2}-\frac{29}{10}
The equation is in standard form.
\frac{\frac{1}{5}x}{\frac{1}{5}}=\frac{-\frac{y}{2}-\frac{29}{10}}{\frac{1}{5}}
Multiply both sides by 5.
x=\frac{-\frac{y}{2}-\frac{29}{10}}{\frac{1}{5}}
Dividing by \frac{1}{5} undoes the multiplication by \frac{1}{5}.
x=\frac{-5y-29}{2}
Divide -\frac{y}{2}-\frac{29}{10} by \frac{1}{5} by multiplying -\frac{y}{2}-\frac{29}{10} by the reciprocal of \frac{1}{5}.
\frac{y+5}{-7-\left(-5\right)}=\frac{x-\left(-2\right)}{3-\left(-2\right)}
The opposite of -5 is 5.
\frac{y+5}{-7+5}=\frac{x-\left(-2\right)}{3-\left(-2\right)}
The opposite of -5 is 5.
\frac{y+5}{-2}=\frac{x-\left(-2\right)}{3-\left(-2\right)}
Add -7 and 5 to get -2.
\frac{-y-5}{2}=\frac{x-\left(-2\right)}{3-\left(-2\right)}
Multiply both numerator and denominator by -1.
\frac{-y-5}{2}=\frac{x+2}{3-\left(-2\right)}
The opposite of -2 is 2.
\frac{-y-5}{2}=\frac{x+2}{3+2}
The opposite of -2 is 2.
\frac{-y-5}{2}=\frac{x+2}{5}
Add 3 and 2 to get 5.
-\frac{1}{2}y-\frac{5}{2}=\frac{x+2}{5}
Divide each term of -y-5 by 2 to get -\frac{1}{2}y-\frac{5}{2}.
-\frac{1}{2}y-\frac{5}{2}=\frac{1}{5}x+\frac{2}{5}
Divide each term of x+2 by 5 to get \frac{1}{5}x+\frac{2}{5}.
-\frac{1}{2}y=\frac{1}{5}x+\frac{2}{5}+\frac{5}{2}
Add \frac{5}{2} to both sides.
-\frac{1}{2}y=\frac{1}{5}x+\frac{29}{10}
Add \frac{2}{5} and \frac{5}{2} to get \frac{29}{10}.
-\frac{1}{2}y=\frac{x}{5}+\frac{29}{10}
The equation is in standard form.
\frac{-\frac{1}{2}y}{-\frac{1}{2}}=\frac{\frac{x}{5}+\frac{29}{10}}{-\frac{1}{2}}
Multiply both sides by -2.
y=\frac{\frac{x}{5}+\frac{29}{10}}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
y=\frac{-2x-29}{5}
Divide \frac{x}{5}+\frac{29}{10} by -\frac{1}{2} by multiplying \frac{x}{5}+\frac{29}{10} by the reciprocal of -\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}