\frac{ y+1 }{ y } - \frac{ y-3y-1 }{ }
Evaluate
2y+2+\frac{1}{y}
Expand
2y+2+\frac{1}{y}
Graph
Share
Copied to clipboard
\frac{y+1}{y}-\frac{-2y-1}{1}
Combine y and -3y to get -2y.
\frac{y+1}{y}-\left(-2y-1\right)
Anything divided by one gives itself.
\frac{y+1}{y}-\left(-2y\right)-\left(-1\right)
To find the opposite of -2y-1, find the opposite of each term.
\frac{y+1}{y}+2y-\left(-1\right)
The opposite of -2y is 2y.
\frac{y+1}{y}+2y+1
The opposite of -1 is 1.
\frac{y+1}{y}+\frac{\left(2y+1\right)y}{y}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2y+1 times \frac{y}{y}.
\frac{y+1+\left(2y+1\right)y}{y}
Since \frac{y+1}{y} and \frac{\left(2y+1\right)y}{y} have the same denominator, add them by adding their numerators.
\frac{y+1+2y^{2}+y}{y}
Do the multiplications in y+1+\left(2y+1\right)y.
\frac{2y+1+2y^{2}}{y}
Combine like terms in y+1+2y^{2}+y.
\frac{y+1}{y}-\frac{-2y-1}{1}
Combine y and -3y to get -2y.
\frac{y+1}{y}-\left(-2y-1\right)
Anything divided by one gives itself.
\frac{y+1}{y}-\left(-2y\right)-\left(-1\right)
To find the opposite of -2y-1, find the opposite of each term.
\frac{y+1}{y}+2y-\left(-1\right)
The opposite of -2y is 2y.
\frac{y+1}{y}+2y+1
The opposite of -1 is 1.
\frac{y+1}{y}+\frac{\left(2y+1\right)y}{y}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2y+1 times \frac{y}{y}.
\frac{y+1+\left(2y+1\right)y}{y}
Since \frac{y+1}{y} and \frac{\left(2y+1\right)y}{y} have the same denominator, add them by adding their numerators.
\frac{y+1+2y^{2}+y}{y}
Do the multiplications in y+1+\left(2y+1\right)y.
\frac{2y+1+2y^{2}}{y}
Combine like terms in y+1+2y^{2}+y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}