Solve for y
y\leq 3
Graph
Share
Copied to clipboard
2\left(y+1\right)-3\left(y-1\right)\geq y-1
Multiply both sides of the equation by 6, the least common multiple of 3,2,6. Since 6 is positive, the inequality direction remains the same.
2y+2-3\left(y-1\right)\geq y-1
Use the distributive property to multiply 2 by y+1.
2y+2-3y+3\geq y-1
Use the distributive property to multiply -3 by y-1.
-y+2+3\geq y-1
Combine 2y and -3y to get -y.
-y+5\geq y-1
Add 2 and 3 to get 5.
-y+5-y\geq -1
Subtract y from both sides.
-2y+5\geq -1
Combine -y and -y to get -2y.
-2y\geq -1-5
Subtract 5 from both sides.
-2y\geq -6
Subtract 5 from -1 to get -6.
y\leq \frac{-6}{-2}
Divide both sides by -2. Since -2 is negative, the inequality direction is changed.
y\leq 3
Divide -6 by -2 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}