Solve for y
y=\frac{2x}{3}-1
Solve for x
x=\frac{3\left(y+1\right)}{2}
Graph
Share
Copied to clipboard
\frac{y}{\frac{2}{3}}+\frac{1}{\frac{2}{3}}=x
Divide each term of y+1 by \frac{2}{3} to get \frac{y}{\frac{2}{3}}+\frac{1}{\frac{2}{3}}.
\frac{y}{\frac{2}{3}}+1\times \frac{3}{2}=x
Divide 1 by \frac{2}{3} by multiplying 1 by the reciprocal of \frac{2}{3}.
\frac{y}{\frac{2}{3}}+\frac{3}{2}=x
Multiply 1 and \frac{3}{2} to get \frac{3}{2}.
\frac{y}{\frac{2}{3}}=x-\frac{3}{2}
Subtract \frac{3}{2} from both sides.
\frac{3}{2}y=x-\frac{3}{2}
The equation is in standard form.
\frac{\frac{3}{2}y}{\frac{3}{2}}=\frac{x-\frac{3}{2}}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{x-\frac{3}{2}}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
y=\frac{2x}{3}-1
Divide x-\frac{3}{2} by \frac{3}{2} by multiplying x-\frac{3}{2} by the reciprocal of \frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}