Solve for x
\left\{\begin{matrix}x=\frac{y}{z}-2\text{, }&y\neq 0\text{ and }z\neq 0\\x\neq -2\text{, }&z=0\text{ and }y=0\end{matrix}\right.
Solve for y
y=z\left(x+2\right)
x\neq -2
Share
Copied to clipboard
y=z\left(x+2\right)
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
y=zx+2z
Use the distributive property to multiply z by x+2.
zx+2z=y
Swap sides so that all variable terms are on the left hand side.
zx=y-2z
Subtract 2z from both sides.
\frac{zx}{z}=\frac{y-2z}{z}
Divide both sides by z.
x=\frac{y-2z}{z}
Dividing by z undoes the multiplication by z.
x=\frac{y}{z}-2
Divide y-2z by z.
x=\frac{y}{z}-2\text{, }x\neq -2
Variable x cannot be equal to -2.
y=z\left(x+2\right)
Multiply both sides of the equation by x+2.
y=zx+2z
Use the distributive property to multiply z by x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}