Solve for a
a=\frac{y+b}{x^{2}}
x\neq 0
Solve for b
b=ax^{2}-y
x\neq 0
Graph
Share
Copied to clipboard
y=axx-b
Multiply both sides of the equation by x.
y=ax^{2}-b
Multiply x and x to get x^{2}.
ax^{2}-b=y
Swap sides so that all variable terms are on the left hand side.
ax^{2}=y+b
Add b to both sides.
x^{2}a=y+b
The equation is in standard form.
\frac{x^{2}a}{x^{2}}=\frac{y+b}{x^{2}}
Divide both sides by x^{2}.
a=\frac{y+b}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
y=axx-b
Multiply both sides of the equation by x.
y=ax^{2}-b
Multiply x and x to get x^{2}.
ax^{2}-b=y
Swap sides so that all variable terms are on the left hand side.
-b=y-ax^{2}
Subtract ax^{2} from both sides.
\frac{-b}{-1}=\frac{y-ax^{2}}{-1}
Divide both sides by -1.
b=\frac{y-ax^{2}}{-1}
Dividing by -1 undoes the multiplication by -1.
b=ax^{2}-y
Divide y-ax^{2} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}