Solve for x_4
x_{4}=\frac{5\left(x_{5}+1960\right)}{8}
Solve for x_5
x_{5}=\frac{8\left(x_{4}-1225\right)}{5}
Quiz
Linear Equation
5 problems similar to:
\frac{ x5 \cdot 10 }{ 100 } +196 = \frac{ x4 \cdot 16 }{ 100 }
Share
Copied to clipboard
x_{5}\times 10+19600=x_{4}\times 16
Multiply both sides of the equation by 100.
x_{4}\times 16=x_{5}\times 10+19600
Swap sides so that all variable terms are on the left hand side.
16x_{4}=10x_{5}+19600
The equation is in standard form.
\frac{16x_{4}}{16}=\frac{10x_{5}+19600}{16}
Divide both sides by 16.
x_{4}=\frac{10x_{5}+19600}{16}
Dividing by 16 undoes the multiplication by 16.
x_{4}=\frac{5x_{5}}{8}+1225
Divide 19600+10x_{5} by 16.
x_{5}\times 10+19600=x_{4}\times 16
Multiply both sides of the equation by 100.
x_{5}\times 10=x_{4}\times 16-19600
Subtract 19600 from both sides.
10x_{5}=16x_{4}-19600
The equation is in standard form.
\frac{10x_{5}}{10}=\frac{16x_{4}-19600}{10}
Divide both sides by 10.
x_{5}=\frac{16x_{4}-19600}{10}
Dividing by 10 undoes the multiplication by 10.
x_{5}=\frac{8x_{4}}{5}-1960
Divide -19600+16x_{4} by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}