Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x-1\right)\left(x-7\right)+\left(x-1\right)\left(2x-6\right)=10\left(x-1\right)\left(2x-1\right)
Variable x cannot be equal to any of the values \frac{1}{2},1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(2x-1\right), the least common multiple of x-1,2x-1.
2x^{2}-15x+7+\left(x-1\right)\left(2x-6\right)=10\left(x-1\right)\left(2x-1\right)
Use the distributive property to multiply 2x-1 by x-7 and combine like terms.
2x^{2}-15x+7+2x^{2}-8x+6=10\left(x-1\right)\left(2x-1\right)
Use the distributive property to multiply x-1 by 2x-6 and combine like terms.
4x^{2}-15x+7-8x+6=10\left(x-1\right)\left(2x-1\right)
Combine 2x^{2} and 2x^{2} to get 4x^{2}.
4x^{2}-23x+7+6=10\left(x-1\right)\left(2x-1\right)
Combine -15x and -8x to get -23x.
4x^{2}-23x+13=10\left(x-1\right)\left(2x-1\right)
Add 7 and 6 to get 13.
4x^{2}-23x+13=\left(10x-10\right)\left(2x-1\right)
Use the distributive property to multiply 10 by x-1.
4x^{2}-23x+13=20x^{2}-30x+10
Use the distributive property to multiply 10x-10 by 2x-1 and combine like terms.
4x^{2}-23x+13-20x^{2}=-30x+10
Subtract 20x^{2} from both sides.
-16x^{2}-23x+13=-30x+10
Combine 4x^{2} and -20x^{2} to get -16x^{2}.
-16x^{2}-23x+13+30x=10
Add 30x to both sides.
-16x^{2}+7x+13=10
Combine -23x and 30x to get 7x.
-16x^{2}+7x+13-10=0
Subtract 10 from both sides.
-16x^{2}+7x+3=0
Subtract 10 from 13 to get 3.
x=\frac{-7±\sqrt{7^{2}-4\left(-16\right)\times 3}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 7 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-16\right)\times 3}}{2\left(-16\right)}
Square 7.
x=\frac{-7±\sqrt{49+64\times 3}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-7±\sqrt{49+192}}{2\left(-16\right)}
Multiply 64 times 3.
x=\frac{-7±\sqrt{241}}{2\left(-16\right)}
Add 49 to 192.
x=\frac{-7±\sqrt{241}}{-32}
Multiply 2 times -16.
x=\frac{\sqrt{241}-7}{-32}
Now solve the equation x=\frac{-7±\sqrt{241}}{-32} when ± is plus. Add -7 to \sqrt{241}.
x=\frac{7-\sqrt{241}}{32}
Divide -7+\sqrt{241} by -32.
x=\frac{-\sqrt{241}-7}{-32}
Now solve the equation x=\frac{-7±\sqrt{241}}{-32} when ± is minus. Subtract \sqrt{241} from -7.
x=\frac{\sqrt{241}+7}{32}
Divide -7-\sqrt{241} by -32.
x=\frac{7-\sqrt{241}}{32} x=\frac{\sqrt{241}+7}{32}
The equation is now solved.
\left(2x-1\right)\left(x-7\right)+\left(x-1\right)\left(2x-6\right)=10\left(x-1\right)\left(2x-1\right)
Variable x cannot be equal to any of the values \frac{1}{2},1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(2x-1\right), the least common multiple of x-1,2x-1.
2x^{2}-15x+7+\left(x-1\right)\left(2x-6\right)=10\left(x-1\right)\left(2x-1\right)
Use the distributive property to multiply 2x-1 by x-7 and combine like terms.
2x^{2}-15x+7+2x^{2}-8x+6=10\left(x-1\right)\left(2x-1\right)
Use the distributive property to multiply x-1 by 2x-6 and combine like terms.
4x^{2}-15x+7-8x+6=10\left(x-1\right)\left(2x-1\right)
Combine 2x^{2} and 2x^{2} to get 4x^{2}.
4x^{2}-23x+7+6=10\left(x-1\right)\left(2x-1\right)
Combine -15x and -8x to get -23x.
4x^{2}-23x+13=10\left(x-1\right)\left(2x-1\right)
Add 7 and 6 to get 13.
4x^{2}-23x+13=\left(10x-10\right)\left(2x-1\right)
Use the distributive property to multiply 10 by x-1.
4x^{2}-23x+13=20x^{2}-30x+10
Use the distributive property to multiply 10x-10 by 2x-1 and combine like terms.
4x^{2}-23x+13-20x^{2}=-30x+10
Subtract 20x^{2} from both sides.
-16x^{2}-23x+13=-30x+10
Combine 4x^{2} and -20x^{2} to get -16x^{2}.
-16x^{2}-23x+13+30x=10
Add 30x to both sides.
-16x^{2}+7x+13=10
Combine -23x and 30x to get 7x.
-16x^{2}+7x=10-13
Subtract 13 from both sides.
-16x^{2}+7x=-3
Subtract 13 from 10 to get -3.
\frac{-16x^{2}+7x}{-16}=-\frac{3}{-16}
Divide both sides by -16.
x^{2}+\frac{7}{-16}x=-\frac{3}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}-\frac{7}{16}x=-\frac{3}{-16}
Divide 7 by -16.
x^{2}-\frac{7}{16}x=\frac{3}{16}
Divide -3 by -16.
x^{2}-\frac{7}{16}x+\left(-\frac{7}{32}\right)^{2}=\frac{3}{16}+\left(-\frac{7}{32}\right)^{2}
Divide -\frac{7}{16}, the coefficient of the x term, by 2 to get -\frac{7}{32}. Then add the square of -\frac{7}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{16}x+\frac{49}{1024}=\frac{3}{16}+\frac{49}{1024}
Square -\frac{7}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{16}x+\frac{49}{1024}=\frac{241}{1024}
Add \frac{3}{16} to \frac{49}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{32}\right)^{2}=\frac{241}{1024}
Factor x^{2}-\frac{7}{16}x+\frac{49}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{32}\right)^{2}}=\sqrt{\frac{241}{1024}}
Take the square root of both sides of the equation.
x-\frac{7}{32}=\frac{\sqrt{241}}{32} x-\frac{7}{32}=-\frac{\sqrt{241}}{32}
Simplify.
x=\frac{\sqrt{241}+7}{32} x=\frac{7-\sqrt{241}}{32}
Add \frac{7}{32} to both sides of the equation.