Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(6x-3\right)\left(x-7\right)+\left(3x-3\right)\left(2x-6\right)=5\left(x-1\right)\left(2x-1\right)
Variable x cannot be equal to any of the values \frac{1}{2},1 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-1\right)\left(2x-1\right), the least common multiple of x-1,2x-1,3.
6x^{2}-45x+21+\left(3x-3\right)\left(2x-6\right)=5\left(x-1\right)\left(2x-1\right)
Use the distributive property to multiply 6x-3 by x-7 and combine like terms.
6x^{2}-45x+21+6x^{2}-24x+18=5\left(x-1\right)\left(2x-1\right)
Use the distributive property to multiply 3x-3 by 2x-6 and combine like terms.
12x^{2}-45x+21-24x+18=5\left(x-1\right)\left(2x-1\right)
Combine 6x^{2} and 6x^{2} to get 12x^{2}.
12x^{2}-69x+21+18=5\left(x-1\right)\left(2x-1\right)
Combine -45x and -24x to get -69x.
12x^{2}-69x+39=5\left(x-1\right)\left(2x-1\right)
Add 21 and 18 to get 39.
12x^{2}-69x+39=\left(5x-5\right)\left(2x-1\right)
Use the distributive property to multiply 5 by x-1.
12x^{2}-69x+39=10x^{2}-15x+5
Use the distributive property to multiply 5x-5 by 2x-1 and combine like terms.
12x^{2}-69x+39-10x^{2}=-15x+5
Subtract 10x^{2} from both sides.
2x^{2}-69x+39=-15x+5
Combine 12x^{2} and -10x^{2} to get 2x^{2}.
2x^{2}-69x+39+15x=5
Add 15x to both sides.
2x^{2}-54x+39=5
Combine -69x and 15x to get -54x.
2x^{2}-54x+39-5=0
Subtract 5 from both sides.
2x^{2}-54x+34=0
Subtract 5 from 39 to get 34.
x=\frac{-\left(-54\right)±\sqrt{\left(-54\right)^{2}-4\times 2\times 34}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -54 for b, and 34 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-54\right)±\sqrt{2916-4\times 2\times 34}}{2\times 2}
Square -54.
x=\frac{-\left(-54\right)±\sqrt{2916-8\times 34}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-54\right)±\sqrt{2916-272}}{2\times 2}
Multiply -8 times 34.
x=\frac{-\left(-54\right)±\sqrt{2644}}{2\times 2}
Add 2916 to -272.
x=\frac{-\left(-54\right)±2\sqrt{661}}{2\times 2}
Take the square root of 2644.
x=\frac{54±2\sqrt{661}}{2\times 2}
The opposite of -54 is 54.
x=\frac{54±2\sqrt{661}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{661}+54}{4}
Now solve the equation x=\frac{54±2\sqrt{661}}{4} when ± is plus. Add 54 to 2\sqrt{661}.
x=\frac{\sqrt{661}+27}{2}
Divide 54+2\sqrt{661} by 4.
x=\frac{54-2\sqrt{661}}{4}
Now solve the equation x=\frac{54±2\sqrt{661}}{4} when ± is minus. Subtract 2\sqrt{661} from 54.
x=\frac{27-\sqrt{661}}{2}
Divide 54-2\sqrt{661} by 4.
x=\frac{\sqrt{661}+27}{2} x=\frac{27-\sqrt{661}}{2}
The equation is now solved.
\left(6x-3\right)\left(x-7\right)+\left(3x-3\right)\left(2x-6\right)=5\left(x-1\right)\left(2x-1\right)
Variable x cannot be equal to any of the values \frac{1}{2},1 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-1\right)\left(2x-1\right), the least common multiple of x-1,2x-1,3.
6x^{2}-45x+21+\left(3x-3\right)\left(2x-6\right)=5\left(x-1\right)\left(2x-1\right)
Use the distributive property to multiply 6x-3 by x-7 and combine like terms.
6x^{2}-45x+21+6x^{2}-24x+18=5\left(x-1\right)\left(2x-1\right)
Use the distributive property to multiply 3x-3 by 2x-6 and combine like terms.
12x^{2}-45x+21-24x+18=5\left(x-1\right)\left(2x-1\right)
Combine 6x^{2} and 6x^{2} to get 12x^{2}.
12x^{2}-69x+21+18=5\left(x-1\right)\left(2x-1\right)
Combine -45x and -24x to get -69x.
12x^{2}-69x+39=5\left(x-1\right)\left(2x-1\right)
Add 21 and 18 to get 39.
12x^{2}-69x+39=\left(5x-5\right)\left(2x-1\right)
Use the distributive property to multiply 5 by x-1.
12x^{2}-69x+39=10x^{2}-15x+5
Use the distributive property to multiply 5x-5 by 2x-1 and combine like terms.
12x^{2}-69x+39-10x^{2}=-15x+5
Subtract 10x^{2} from both sides.
2x^{2}-69x+39=-15x+5
Combine 12x^{2} and -10x^{2} to get 2x^{2}.
2x^{2}-69x+39+15x=5
Add 15x to both sides.
2x^{2}-54x+39=5
Combine -69x and 15x to get -54x.
2x^{2}-54x=5-39
Subtract 39 from both sides.
2x^{2}-54x=-34
Subtract 39 from 5 to get -34.
\frac{2x^{2}-54x}{2}=-\frac{34}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{54}{2}\right)x=-\frac{34}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-27x=-\frac{34}{2}
Divide -54 by 2.
x^{2}-27x=-17
Divide -34 by 2.
x^{2}-27x+\left(-\frac{27}{2}\right)^{2}=-17+\left(-\frac{27}{2}\right)^{2}
Divide -27, the coefficient of the x term, by 2 to get -\frac{27}{2}. Then add the square of -\frac{27}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-27x+\frac{729}{4}=-17+\frac{729}{4}
Square -\frac{27}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-27x+\frac{729}{4}=\frac{661}{4}
Add -17 to \frac{729}{4}.
\left(x-\frac{27}{2}\right)^{2}=\frac{661}{4}
Factor x^{2}-27x+\frac{729}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{27}{2}\right)^{2}}=\sqrt{\frac{661}{4}}
Take the square root of both sides of the equation.
x-\frac{27}{2}=\frac{\sqrt{661}}{2} x-\frac{27}{2}=-\frac{\sqrt{661}}{2}
Simplify.
x=\frac{\sqrt{661}+27}{2} x=\frac{27-\sqrt{661}}{2}
Add \frac{27}{2} to both sides of the equation.