Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(4x-2\right)\left(x-7\right)+\left(2x-2\right)\left(2x-6\right)=5\left(x-1\right)\left(2x-1\right)
Variable x cannot be equal to any of the values \frac{1}{2},1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-1\right)\left(2x-1\right), the least common multiple of x-1,2x-1,2.
4x^{2}-30x+14+\left(2x-2\right)\left(2x-6\right)=5\left(x-1\right)\left(2x-1\right)
Use the distributive property to multiply 4x-2 by x-7 and combine like terms.
4x^{2}-30x+14+4x^{2}-16x+12=5\left(x-1\right)\left(2x-1\right)
Use the distributive property to multiply 2x-2 by 2x-6 and combine like terms.
8x^{2}-30x+14-16x+12=5\left(x-1\right)\left(2x-1\right)
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}-46x+14+12=5\left(x-1\right)\left(2x-1\right)
Combine -30x and -16x to get -46x.
8x^{2}-46x+26=5\left(x-1\right)\left(2x-1\right)
Add 14 and 12 to get 26.
8x^{2}-46x+26=\left(5x-5\right)\left(2x-1\right)
Use the distributive property to multiply 5 by x-1.
8x^{2}-46x+26=10x^{2}-15x+5
Use the distributive property to multiply 5x-5 by 2x-1 and combine like terms.
8x^{2}-46x+26-10x^{2}=-15x+5
Subtract 10x^{2} from both sides.
-2x^{2}-46x+26=-15x+5
Combine 8x^{2} and -10x^{2} to get -2x^{2}.
-2x^{2}-46x+26+15x=5
Add 15x to both sides.
-2x^{2}-31x+26=5
Combine -46x and 15x to get -31x.
-2x^{2}-31x+26-5=0
Subtract 5 from both sides.
-2x^{2}-31x+21=0
Subtract 5 from 26 to get 21.
x=\frac{-\left(-31\right)±\sqrt{\left(-31\right)^{2}-4\left(-2\right)\times 21}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -31 for b, and 21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-31\right)±\sqrt{961-4\left(-2\right)\times 21}}{2\left(-2\right)}
Square -31.
x=\frac{-\left(-31\right)±\sqrt{961+8\times 21}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-31\right)±\sqrt{961+168}}{2\left(-2\right)}
Multiply 8 times 21.
x=\frac{-\left(-31\right)±\sqrt{1129}}{2\left(-2\right)}
Add 961 to 168.
x=\frac{31±\sqrt{1129}}{2\left(-2\right)}
The opposite of -31 is 31.
x=\frac{31±\sqrt{1129}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{1129}+31}{-4}
Now solve the equation x=\frac{31±\sqrt{1129}}{-4} when ± is plus. Add 31 to \sqrt{1129}.
x=\frac{-\sqrt{1129}-31}{4}
Divide 31+\sqrt{1129} by -4.
x=\frac{31-\sqrt{1129}}{-4}
Now solve the equation x=\frac{31±\sqrt{1129}}{-4} when ± is minus. Subtract \sqrt{1129} from 31.
x=\frac{\sqrt{1129}-31}{4}
Divide 31-\sqrt{1129} by -4.
x=\frac{-\sqrt{1129}-31}{4} x=\frac{\sqrt{1129}-31}{4}
The equation is now solved.
\left(4x-2\right)\left(x-7\right)+\left(2x-2\right)\left(2x-6\right)=5\left(x-1\right)\left(2x-1\right)
Variable x cannot be equal to any of the values \frac{1}{2},1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-1\right)\left(2x-1\right), the least common multiple of x-1,2x-1,2.
4x^{2}-30x+14+\left(2x-2\right)\left(2x-6\right)=5\left(x-1\right)\left(2x-1\right)
Use the distributive property to multiply 4x-2 by x-7 and combine like terms.
4x^{2}-30x+14+4x^{2}-16x+12=5\left(x-1\right)\left(2x-1\right)
Use the distributive property to multiply 2x-2 by 2x-6 and combine like terms.
8x^{2}-30x+14-16x+12=5\left(x-1\right)\left(2x-1\right)
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}-46x+14+12=5\left(x-1\right)\left(2x-1\right)
Combine -30x and -16x to get -46x.
8x^{2}-46x+26=5\left(x-1\right)\left(2x-1\right)
Add 14 and 12 to get 26.
8x^{2}-46x+26=\left(5x-5\right)\left(2x-1\right)
Use the distributive property to multiply 5 by x-1.
8x^{2}-46x+26=10x^{2}-15x+5
Use the distributive property to multiply 5x-5 by 2x-1 and combine like terms.
8x^{2}-46x+26-10x^{2}=-15x+5
Subtract 10x^{2} from both sides.
-2x^{2}-46x+26=-15x+5
Combine 8x^{2} and -10x^{2} to get -2x^{2}.
-2x^{2}-46x+26+15x=5
Add 15x to both sides.
-2x^{2}-31x+26=5
Combine -46x and 15x to get -31x.
-2x^{2}-31x=5-26
Subtract 26 from both sides.
-2x^{2}-31x=-21
Subtract 26 from 5 to get -21.
\frac{-2x^{2}-31x}{-2}=-\frac{21}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{31}{-2}\right)x=-\frac{21}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{31}{2}x=-\frac{21}{-2}
Divide -31 by -2.
x^{2}+\frac{31}{2}x=\frac{21}{2}
Divide -21 by -2.
x^{2}+\frac{31}{2}x+\left(\frac{31}{4}\right)^{2}=\frac{21}{2}+\left(\frac{31}{4}\right)^{2}
Divide \frac{31}{2}, the coefficient of the x term, by 2 to get \frac{31}{4}. Then add the square of \frac{31}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{31}{2}x+\frac{961}{16}=\frac{21}{2}+\frac{961}{16}
Square \frac{31}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{31}{2}x+\frac{961}{16}=\frac{1129}{16}
Add \frac{21}{2} to \frac{961}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{31}{4}\right)^{2}=\frac{1129}{16}
Factor x^{2}+\frac{31}{2}x+\frac{961}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{31}{4}\right)^{2}}=\sqrt{\frac{1129}{16}}
Take the square root of both sides of the equation.
x+\frac{31}{4}=\frac{\sqrt{1129}}{4} x+\frac{31}{4}=-\frac{\sqrt{1129}}{4}
Simplify.
x=\frac{\sqrt{1129}-31}{4} x=\frac{-\sqrt{1129}-31}{4}
Subtract \frac{31}{4} from both sides of the equation.