Solve for y (complex solution)
y=-\frac{2\sqrt{3x^{2}}\left(x-4\right)}{3\left(3-x\right)}
x\neq 0\text{ and }x\neq 4\text{ and }x\neq 3
Solve for x
\left\{\begin{matrix}x=\frac{-\sqrt{3y^{2}+8\sqrt{3}y+64}-\sqrt{3}y+8}{4}\text{; }x=\frac{-\sqrt{3y^{2}-8\sqrt{3}y+64}+\sqrt{3}y+8}{4}\text{, }&y>0\\x=\frac{\sqrt{3y^{2}-8\sqrt{3}y+64}+\sqrt{3}y+8}{4}\text{, }&y\neq 0\end{matrix}\right.
Solve for y
y=-\frac{2\sqrt{3}|x|\left(x-4\right)}{3\left(3-x\right)}
x\neq 4\text{ and }x\neq 0\text{ and }x\neq 3
Graph
Share
Copied to clipboard
x-4=\frac{3}{2}y\times \left(3x^{2}\right)^{-\frac{1}{2}}\left(x-3\right)
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
x-4=\frac{3}{2}y\times 3^{-\frac{1}{2}}\left(x^{2}\right)^{-\frac{1}{2}}\left(x-3\right)
Expand \left(3x^{2}\right)^{-\frac{1}{2}}.
x-4=\frac{3}{2}y\times 3^{-\frac{1}{2}}x^{-1}\left(x-3\right)
To raise a power to another power, multiply the exponents. Multiply 2 and -\frac{1}{2} to get -1.
x-4=\frac{3}{2}y\times 3^{-\frac{1}{2}}x^{-1}x-\frac{3}{2}y\times 3^{\frac{1}{2}}x^{-1}
Use the distributive property to multiply \frac{3}{2}y\times 3^{-\frac{1}{2}}x^{-1} by x-3.
\frac{3}{2}y\times 3^{-\frac{1}{2}}x^{-1}x-\frac{3}{2}y\times 3^{\frac{1}{2}}x^{-1}=x-4
Swap sides so that all variable terms are on the left hand side.
\frac{3}{2}\times 3^{-\frac{1}{2}}\times \frac{1}{x}xy-\frac{3}{2}\sqrt{3}\times \frac{1}{x}y=x-4
Reorder the terms.
\frac{3}{2}\times 3^{-\frac{1}{2}}\times 2\times 1xy-\frac{3}{2}\sqrt{3}\times 2y=2xx+2x\left(-4\right)
Multiply both sides of the equation by 2x, the least common multiple of 2,x.
3\times 3^{-\frac{1}{2}}\times 1xy-\frac{3}{2}\sqrt{3}\times 2y=2xx+2x\left(-4\right)
Multiply \frac{3}{2} and 2 to get 3.
3^{\frac{1}{2}}\times 1xy-\frac{3}{2}\sqrt{3}\times 2y=2xx+2x\left(-4\right)
To multiply powers of the same base, add their exponents. Add 1 and -\frac{1}{2} to get \frac{1}{2}.
3^{\frac{1}{2}}\times 1xy-3\sqrt{3}y=2xx+2x\left(-4\right)
Multiply -\frac{3}{2} and 2 to get -3.
3^{\frac{1}{2}}\times 1xy-3\sqrt{3}y=2x^{2}+2x\left(-4\right)
Multiply x and x to get x^{2}.
3^{\frac{1}{2}}\times 1xy-3\sqrt{3}y=2x^{2}-8x
Multiply 2 and -4 to get -8.
\sqrt{3}xy-3\sqrt{3}y=2x^{2}-8x
Reorder the terms.
\left(\sqrt{3}x-3\sqrt{3}\right)y=2x^{2}-8x
Combine all terms containing y.
\frac{\left(\sqrt{3}x-3\sqrt{3}\right)y}{\sqrt{3}x-3\sqrt{3}}=\frac{2x\left(x-4\right)}{\sqrt{3}x-3\sqrt{3}}
Divide both sides by \sqrt{3}x-3\sqrt{3}.
y=\frac{2x\left(x-4\right)}{\sqrt{3}x-3\sqrt{3}}
Dividing by \sqrt{3}x-3\sqrt{3} undoes the multiplication by \sqrt{3}x-3\sqrt{3}.
y=\frac{2\sqrt{3}x\left(x-4\right)}{3\left(x-3\right)}
Divide 2x\left(-4+x\right) by \sqrt{3}x-3\sqrt{3}.
y=\frac{2\sqrt{3}x\left(x-4\right)}{3\left(x-3\right)}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}