Solve for x
x = -\frac{149}{19} = -7\frac{16}{19} \approx -7.842105263
Graph
Share
Copied to clipboard
6\left(x-4\right)-15\left(x+6\right)=10\left(x+5\right)-15
Multiply both sides of the equation by 30, the least common multiple of 5,2,3.
6x-24-15\left(x+6\right)=10\left(x+5\right)-15
Use the distributive property to multiply 6 by x-4.
6x-24-15x-90=10\left(x+5\right)-15
Use the distributive property to multiply -15 by x+6.
-9x-24-90=10\left(x+5\right)-15
Combine 6x and -15x to get -9x.
-9x-114=10\left(x+5\right)-15
Subtract 90 from -24 to get -114.
-9x-114=10x+50-15
Use the distributive property to multiply 10 by x+5.
-9x-114=10x+35
Subtract 15 from 50 to get 35.
-9x-114-10x=35
Subtract 10x from both sides.
-19x-114=35
Combine -9x and -10x to get -19x.
-19x=35+114
Add 114 to both sides.
-19x=149
Add 35 and 114 to get 149.
x=\frac{149}{-19}
Divide both sides by -19.
x=-\frac{149}{19}
Fraction \frac{149}{-19} can be rewritten as -\frac{149}{19} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}