Solve for x
x=4
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
Graph
Share
Copied to clipboard
\left(7x-21\right)\left(x-3\right)-\left(7x+21\right)\left(x+3\right)+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by 7\left(x-3\right)\left(x+3\right), the least common multiple of x+3,x-3,7.
7x^{2}-42x+63-\left(7x+21\right)\left(x+3\right)+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Use the distributive property to multiply 7x-21 by x-3 and combine like terms.
7x^{2}-42x+63-\left(7x^{2}+42x+63\right)+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Use the distributive property to multiply 7x+21 by x+3 and combine like terms.
7x^{2}-42x+63-7x^{2}-42x-63+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
To find the opposite of 7x^{2}+42x+63, find the opposite of each term.
-42x+63-42x-63+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Combine 7x^{2} and -7x^{2} to get 0.
-84x+63-63+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Combine -42x and -42x to get -84x.
-84x+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Subtract 63 from 63 to get 0.
-84x+\left(x^{2}-9\right)\left(42+6\right)=0
Multiply 6 and 7 to get 42.
-84x+\left(x^{2}-9\right)\times 48=0
Add 42 and 6 to get 48.
-84x+48x^{2}-432=0
Use the distributive property to multiply x^{2}-9 by 48.
-7x+4x^{2}-36=0
Divide both sides by 12.
4x^{2}-7x-36=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-7 ab=4\left(-36\right)=-144
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-36. To find a and b, set up a system to be solved.
1,-144 2,-72 3,-48 4,-36 6,-24 8,-18 9,-16 12,-12
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -144.
1-144=-143 2-72=-70 3-48=-45 4-36=-32 6-24=-18 8-18=-10 9-16=-7 12-12=0
Calculate the sum for each pair.
a=-16 b=9
The solution is the pair that gives sum -7.
\left(4x^{2}-16x\right)+\left(9x-36\right)
Rewrite 4x^{2}-7x-36 as \left(4x^{2}-16x\right)+\left(9x-36\right).
4x\left(x-4\right)+9\left(x-4\right)
Factor out 4x in the first and 9 in the second group.
\left(x-4\right)\left(4x+9\right)
Factor out common term x-4 by using distributive property.
x=4 x=-\frac{9}{4}
To find equation solutions, solve x-4=0 and 4x+9=0.
\left(7x-21\right)\left(x-3\right)-\left(7x+21\right)\left(x+3\right)+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by 7\left(x-3\right)\left(x+3\right), the least common multiple of x+3,x-3,7.
7x^{2}-42x+63-\left(7x+21\right)\left(x+3\right)+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Use the distributive property to multiply 7x-21 by x-3 and combine like terms.
7x^{2}-42x+63-\left(7x^{2}+42x+63\right)+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Use the distributive property to multiply 7x+21 by x+3 and combine like terms.
7x^{2}-42x+63-7x^{2}-42x-63+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
To find the opposite of 7x^{2}+42x+63, find the opposite of each term.
-42x+63-42x-63+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Combine 7x^{2} and -7x^{2} to get 0.
-84x+63-63+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Combine -42x and -42x to get -84x.
-84x+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Subtract 63 from 63 to get 0.
-84x+\left(x^{2}-9\right)\left(42+6\right)=0
Multiply 6 and 7 to get 42.
-84x+\left(x^{2}-9\right)\times 48=0
Add 42 and 6 to get 48.
-84x+48x^{2}-432=0
Use the distributive property to multiply x^{2}-9 by 48.
48x^{2}-84x-432=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-84\right)±\sqrt{\left(-84\right)^{2}-4\times 48\left(-432\right)}}{2\times 48}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 48 for a, -84 for b, and -432 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-84\right)±\sqrt{7056-4\times 48\left(-432\right)}}{2\times 48}
Square -84.
x=\frac{-\left(-84\right)±\sqrt{7056-192\left(-432\right)}}{2\times 48}
Multiply -4 times 48.
x=\frac{-\left(-84\right)±\sqrt{7056+82944}}{2\times 48}
Multiply -192 times -432.
x=\frac{-\left(-84\right)±\sqrt{90000}}{2\times 48}
Add 7056 to 82944.
x=\frac{-\left(-84\right)±300}{2\times 48}
Take the square root of 90000.
x=\frac{84±300}{2\times 48}
The opposite of -84 is 84.
x=\frac{84±300}{96}
Multiply 2 times 48.
x=\frac{384}{96}
Now solve the equation x=\frac{84±300}{96} when ± is plus. Add 84 to 300.
x=4
Divide 384 by 96.
x=-\frac{216}{96}
Now solve the equation x=\frac{84±300}{96} when ± is minus. Subtract 300 from 84.
x=-\frac{9}{4}
Reduce the fraction \frac{-216}{96} to lowest terms by extracting and canceling out 24.
x=4 x=-\frac{9}{4}
The equation is now solved.
\left(7x-21\right)\left(x-3\right)-\left(7x+21\right)\left(x+3\right)+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by 7\left(x-3\right)\left(x+3\right), the least common multiple of x+3,x-3,7.
7x^{2}-42x+63-\left(7x+21\right)\left(x+3\right)+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Use the distributive property to multiply 7x-21 by x-3 and combine like terms.
7x^{2}-42x+63-\left(7x^{2}+42x+63\right)+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Use the distributive property to multiply 7x+21 by x+3 and combine like terms.
7x^{2}-42x+63-7x^{2}-42x-63+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
To find the opposite of 7x^{2}+42x+63, find the opposite of each term.
-42x+63-42x-63+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Combine 7x^{2} and -7x^{2} to get 0.
-84x+63-63+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Combine -42x and -42x to get -84x.
-84x+\left(x^{2}-9\right)\left(6\times 7+6\right)=0
Subtract 63 from 63 to get 0.
-84x+\left(x^{2}-9\right)\left(42+6\right)=0
Multiply 6 and 7 to get 42.
-84x+\left(x^{2}-9\right)\times 48=0
Add 42 and 6 to get 48.
-84x+48x^{2}-432=0
Use the distributive property to multiply x^{2}-9 by 48.
-84x+48x^{2}=432
Add 432 to both sides. Anything plus zero gives itself.
48x^{2}-84x=432
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{48x^{2}-84x}{48}=\frac{432}{48}
Divide both sides by 48.
x^{2}+\left(-\frac{84}{48}\right)x=\frac{432}{48}
Dividing by 48 undoes the multiplication by 48.
x^{2}-\frac{7}{4}x=\frac{432}{48}
Reduce the fraction \frac{-84}{48} to lowest terms by extracting and canceling out 12.
x^{2}-\frac{7}{4}x=9
Divide 432 by 48.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=9+\left(-\frac{7}{8}\right)^{2}
Divide -\frac{7}{4}, the coefficient of the x term, by 2 to get -\frac{7}{8}. Then add the square of -\frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{4}x+\frac{49}{64}=9+\frac{49}{64}
Square -\frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{625}{64}
Add 9 to \frac{49}{64}.
\left(x-\frac{7}{8}\right)^{2}=\frac{625}{64}
Factor x^{2}-\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{625}{64}}
Take the square root of both sides of the equation.
x-\frac{7}{8}=\frac{25}{8} x-\frac{7}{8}=-\frac{25}{8}
Simplify.
x=4 x=-\frac{9}{4}
Add \frac{7}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}