Solve for x
x=0
Graph
Share
Copied to clipboard
\left(x-3\right)\left(x-3\right)=\left(x+3\right)\left(3+x\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x+3,x-3.
\left(x-3\right)^{2}=\left(x+3\right)\left(3+x\right)
Multiply x-3 and x-3 to get \left(x-3\right)^{2}.
\left(x-3\right)^{2}=\left(x+3\right)^{2}
Multiply x+3 and 3+x to get \left(x+3\right)^{2}.
x^{2}-6x+9=\left(x+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9=x^{2}+6x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}-6x+9-x^{2}=6x+9
Subtract x^{2} from both sides.
-6x+9=6x+9
Combine x^{2} and -x^{2} to get 0.
-6x+9-6x=9
Subtract 6x from both sides.
-12x+9=9
Combine -6x and -6x to get -12x.
-12x=9-9
Subtract 9 from both sides.
-12x=0
Subtract 9 from 9 to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -12 is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}