Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-3\right)\left(x-4\right)}{\left(x-4\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x-4 is \left(x-4\right)\left(x+2\right). Multiply \frac{x-3}{x+2} times \frac{x-4}{x-4}. Multiply \frac{x+1}{x-4} times \frac{x+2}{x+2}.
\frac{\left(x-3\right)\left(x-4\right)+\left(x+1\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}
Since \frac{\left(x-3\right)\left(x-4\right)}{\left(x-4\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-4x-3x+12+x^{2}+2x+x+2}{\left(x-4\right)\left(x+2\right)}
Do the multiplications in \left(x-3\right)\left(x-4\right)+\left(x+1\right)\left(x+2\right).
\frac{2x^{2}-4x+14}{\left(x-4\right)\left(x+2\right)}
Combine like terms in x^{2}-4x-3x+12+x^{2}+2x+x+2.
\frac{2x^{2}-4x+14}{x^{2}-2x-8}
Expand \left(x-4\right)\left(x+2\right).
\frac{\left(x-3\right)\left(x-4\right)}{\left(x-4\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x-4 is \left(x-4\right)\left(x+2\right). Multiply \frac{x-3}{x+2} times \frac{x-4}{x-4}. Multiply \frac{x+1}{x-4} times \frac{x+2}{x+2}.
\frac{\left(x-3\right)\left(x-4\right)+\left(x+1\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}
Since \frac{\left(x-3\right)\left(x-4\right)}{\left(x-4\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-4x-3x+12+x^{2}+2x+x+2}{\left(x-4\right)\left(x+2\right)}
Do the multiplications in \left(x-3\right)\left(x-4\right)+\left(x+1\right)\left(x+2\right).
\frac{2x^{2}-4x+14}{\left(x-4\right)\left(x+2\right)}
Combine like terms in x^{2}-4x-3x+12+x^{2}+2x+x+2.
\frac{2x^{2}-4x+14}{x^{2}-2x-8}
Expand \left(x-4\right)\left(x+2\right).