Solve for x
x = \frac{101}{32} = 3\frac{5}{32} = 3.15625
Graph
Share
Copied to clipboard
3\left(x-3\right)+105=5\left(7x-1\right)
Multiply both sides of the equation by 15, the least common multiple of 5,3.
3x-9+105=5\left(7x-1\right)
Use the distributive property to multiply 3 by x-3.
3x+96=5\left(7x-1\right)
Add -9 and 105 to get 96.
3x+96=35x-5
Use the distributive property to multiply 5 by 7x-1.
3x+96-35x=-5
Subtract 35x from both sides.
-32x+96=-5
Combine 3x and -35x to get -32x.
-32x=-5-96
Subtract 96 from both sides.
-32x=-101
Subtract 96 from -5 to get -101.
x=\frac{-101}{-32}
Divide both sides by -32.
x=\frac{101}{32}
Fraction \frac{-101}{-32} can be simplified to \frac{101}{32} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}