Solve for x
x=-1
Graph
Share
Copied to clipboard
\left(x-1\right)\left(x-2\right)=\left(x-5\right)x
Variable x cannot be equal to any of the values 1,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x-1\right), the least common multiple of x-5,x-1.
x^{2}-3x+2=\left(x-5\right)x
Use the distributive property to multiply x-1 by x-2 and combine like terms.
x^{2}-3x+2=x^{2}-5x
Use the distributive property to multiply x-5 by x.
x^{2}-3x+2-x^{2}=-5x
Subtract x^{2} from both sides.
-3x+2=-5x
Combine x^{2} and -x^{2} to get 0.
-3x+2+5x=0
Add 5x to both sides.
2x+2=0
Combine -3x and 5x to get 2x.
2x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-2}{2}
Divide both sides by 2.
x=-1
Divide -2 by 2 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}