Solve for x
x=24\sqrt{2}+36\approx 69.941125497
Graph
Share
Copied to clipboard
x-12=\left(x+12\right)\sqrt{\frac{1}{2}}
Variable x cannot be equal to -12 since division by zero is not defined. Multiply both sides of the equation by x+12.
x-12=\left(x+12\right)\times \frac{\sqrt{1}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
x-12=\left(x+12\right)\times \frac{1}{\sqrt{2}}
Calculate the square root of 1 and get 1.
x-12=\left(x+12\right)\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
x-12=\left(x+12\right)\times \frac{\sqrt{2}}{2}
The square of \sqrt{2} is 2.
x-12=\frac{\left(x+12\right)\sqrt{2}}{2}
Express \left(x+12\right)\times \frac{\sqrt{2}}{2} as a single fraction.
x-12=\frac{x\sqrt{2}+12\sqrt{2}}{2}
Use the distributive property to multiply x+12 by \sqrt{2}.
x-12-\frac{x\sqrt{2}+12\sqrt{2}}{2}=0
Subtract \frac{x\sqrt{2}+12\sqrt{2}}{2} from both sides.
x-\frac{x\sqrt{2}+12\sqrt{2}}{2}=12
Add 12 to both sides. Anything plus zero gives itself.
2x-\left(x\sqrt{2}+12\sqrt{2}\right)=24
Multiply both sides of the equation by 2.
2x-x\sqrt{2}-12\sqrt{2}=24
To find the opposite of x\sqrt{2}+12\sqrt{2}, find the opposite of each term.
2x-x\sqrt{2}=24+12\sqrt{2}
Add 12\sqrt{2} to both sides.
\left(2-\sqrt{2}\right)x=24+12\sqrt{2}
Combine all terms containing x.
\left(2-\sqrt{2}\right)x=12\sqrt{2}+24
The equation is in standard form.
\frac{\left(2-\sqrt{2}\right)x}{2-\sqrt{2}}=\frac{12\sqrt{2}+24}{2-\sqrt{2}}
Divide both sides by 2-\sqrt{2}.
x=\frac{12\sqrt{2}+24}{2-\sqrt{2}}
Dividing by 2-\sqrt{2} undoes the multiplication by 2-\sqrt{2}.
x=24\sqrt{2}+36
Divide 24+12\sqrt{2} by 2-\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}