Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-6}{x^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{x-1}{x-2} times \frac{x+2}{x+2}. Multiply \frac{x+1}{x+2} times \frac{x-2}{x-2}.
\frac{\left(x-1\right)\left(x+2\right)-\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-6}{x^{2}-4}
Since \frac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x-x-2-x^{2}+2x-x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x-6}{x^{2}-4}
Do the multiplications in \left(x-1\right)\left(x+2\right)-\left(x+1\right)\left(x-2\right).
\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{x-6}{x^{2}-4}
Combine like terms in x^{2}+2x-x-2-x^{2}+2x-x+2.
\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{x-6}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{2x+x-6}{\left(x-2\right)\left(x+2\right)}
Since \frac{2x}{\left(x-2\right)\left(x+2\right)} and \frac{x-6}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{3x-6}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 2x+x-6.
\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{3x-6}{\left(x-2\right)\left(x+2\right)}.
\frac{3}{x+2}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-6}{x^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{x-1}{x-2} times \frac{x+2}{x+2}. Multiply \frac{x+1}{x+2} times \frac{x-2}{x-2}.
\frac{\left(x-1\right)\left(x+2\right)-\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-6}{x^{2}-4}
Since \frac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x-x-2-x^{2}+2x-x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x-6}{x^{2}-4}
Do the multiplications in \left(x-1\right)\left(x+2\right)-\left(x+1\right)\left(x-2\right).
\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{x-6}{x^{2}-4}
Combine like terms in x^{2}+2x-x-2-x^{2}+2x-x+2.
\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{x-6}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{2x+x-6}{\left(x-2\right)\left(x+2\right)}
Since \frac{2x}{\left(x-2\right)\left(x+2\right)} and \frac{x-6}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{3x-6}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 2x+x-6.
\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{3x-6}{\left(x-2\right)\left(x+2\right)}.
\frac{3}{x+2}
Cancel out x-2 in both numerator and denominator.