Solve for x
x=0
Graph
Share
Copied to clipboard
\left(x-1\right)\left(x-1\right)=\left(x+1\right)\times 2x+\left(x-1\right)\left(x+1\right)\left(-1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x+1,x-1.
\left(x-1\right)^{2}=\left(x+1\right)\times 2x+\left(x-1\right)\left(x+1\right)\left(-1\right)
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
x^{2}-2x+1=\left(x+1\right)\times 2x+\left(x-1\right)\left(x+1\right)\left(-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1=\left(2x+2\right)x+\left(x-1\right)\left(x+1\right)\left(-1\right)
Use the distributive property to multiply x+1 by 2.
x^{2}-2x+1=2x^{2}+2x+\left(x-1\right)\left(x+1\right)\left(-1\right)
Use the distributive property to multiply 2x+2 by x.
x^{2}-2x+1=2x^{2}+2x+\left(x^{2}-1\right)\left(-1\right)
Use the distributive property to multiply x-1 by x+1 and combine like terms.
x^{2}-2x+1=2x^{2}+2x-x^{2}+1
Use the distributive property to multiply x^{2}-1 by -1.
x^{2}-2x+1=x^{2}+2x+1
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-2x+1-x^{2}=2x+1
Subtract x^{2} from both sides.
-2x+1=2x+1
Combine x^{2} and -x^{2} to get 0.
-2x+1-2x=1
Subtract 2x from both sides.
-4x+1=1
Combine -2x and -2x to get -4x.
-4x=1-1
Subtract 1 from both sides.
-4x=0
Subtract 1 from 1 to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -4 is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}