Solve for x
x = -\frac{7}{4} = -1\frac{3}{4} = -1.75
x=1
Graph
Share
Copied to clipboard
15\left(x-1\right)+6x^{2}-12x+6=2\left(x^{2}-1\right)
Multiply both sides of the equation by 30, the least common multiple of 2,5,15.
15x-15+6x^{2}-12x+6=2\left(x^{2}-1\right)
Use the distributive property to multiply 15 by x-1.
3x-15+6x^{2}+6=2\left(x^{2}-1\right)
Combine 15x and -12x to get 3x.
3x-9+6x^{2}=2\left(x^{2}-1\right)
Add -15 and 6 to get -9.
3x-9+6x^{2}=2x^{2}-2
Use the distributive property to multiply 2 by x^{2}-1.
3x-9+6x^{2}-2x^{2}=-2
Subtract 2x^{2} from both sides.
3x-9+4x^{2}=-2
Combine 6x^{2} and -2x^{2} to get 4x^{2}.
3x-9+4x^{2}+2=0
Add 2 to both sides.
3x-7+4x^{2}=0
Add -9 and 2 to get -7.
4x^{2}+3x-7=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=3 ab=4\left(-7\right)=-28
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
-1,28 -2,14 -4,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -28.
-1+28=27 -2+14=12 -4+7=3
Calculate the sum for each pair.
a=-4 b=7
The solution is the pair that gives sum 3.
\left(4x^{2}-4x\right)+\left(7x-7\right)
Rewrite 4x^{2}+3x-7 as \left(4x^{2}-4x\right)+\left(7x-7\right).
4x\left(x-1\right)+7\left(x-1\right)
Factor out 4x in the first and 7 in the second group.
\left(x-1\right)\left(4x+7\right)
Factor out common term x-1 by using distributive property.
x=1 x=-\frac{7}{4}
To find equation solutions, solve x-1=0 and 4x+7=0.
15\left(x-1\right)+6x^{2}-12x+6=2\left(x^{2}-1\right)
Multiply both sides of the equation by 30, the least common multiple of 2,5,15.
15x-15+6x^{2}-12x+6=2\left(x^{2}-1\right)
Use the distributive property to multiply 15 by x-1.
3x-15+6x^{2}+6=2\left(x^{2}-1\right)
Combine 15x and -12x to get 3x.
3x-9+6x^{2}=2\left(x^{2}-1\right)
Add -15 and 6 to get -9.
3x-9+6x^{2}=2x^{2}-2
Use the distributive property to multiply 2 by x^{2}-1.
3x-9+6x^{2}-2x^{2}=-2
Subtract 2x^{2} from both sides.
3x-9+4x^{2}=-2
Combine 6x^{2} and -2x^{2} to get 4x^{2}.
3x-9+4x^{2}+2=0
Add 2 to both sides.
3x-7+4x^{2}=0
Add -9 and 2 to get -7.
4x^{2}+3x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\times 4\left(-7\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 3 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 4\left(-7\right)}}{2\times 4}
Square 3.
x=\frac{-3±\sqrt{9-16\left(-7\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-3±\sqrt{9+112}}{2\times 4}
Multiply -16 times -7.
x=\frac{-3±\sqrt{121}}{2\times 4}
Add 9 to 112.
x=\frac{-3±11}{2\times 4}
Take the square root of 121.
x=\frac{-3±11}{8}
Multiply 2 times 4.
x=\frac{8}{8}
Now solve the equation x=\frac{-3±11}{8} when ± is plus. Add -3 to 11.
x=1
Divide 8 by 8.
x=-\frac{14}{8}
Now solve the equation x=\frac{-3±11}{8} when ± is minus. Subtract 11 from -3.
x=-\frac{7}{4}
Reduce the fraction \frac{-14}{8} to lowest terms by extracting and canceling out 2.
x=1 x=-\frac{7}{4}
The equation is now solved.
15\left(x-1\right)+6x^{2}-12x+6=2\left(x^{2}-1\right)
Multiply both sides of the equation by 30, the least common multiple of 2,5,15.
15x-15+6x^{2}-12x+6=2\left(x^{2}-1\right)
Use the distributive property to multiply 15 by x-1.
3x-15+6x^{2}+6=2\left(x^{2}-1\right)
Combine 15x and -12x to get 3x.
3x-9+6x^{2}=2\left(x^{2}-1\right)
Add -15 and 6 to get -9.
3x-9+6x^{2}=2x^{2}-2
Use the distributive property to multiply 2 by x^{2}-1.
3x-9+6x^{2}-2x^{2}=-2
Subtract 2x^{2} from both sides.
3x-9+4x^{2}=-2
Combine 6x^{2} and -2x^{2} to get 4x^{2}.
3x+4x^{2}=-2+9
Add 9 to both sides.
3x+4x^{2}=7
Add -2 and 9 to get 7.
4x^{2}+3x=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+3x}{4}=\frac{7}{4}
Divide both sides by 4.
x^{2}+\frac{3}{4}x=\frac{7}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=\frac{7}{4}+\left(\frac{3}{8}\right)^{2}
Divide \frac{3}{4}, the coefficient of the x term, by 2 to get \frac{3}{8}. Then add the square of \frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{7}{4}+\frac{9}{64}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{121}{64}
Add \frac{7}{4} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{8}\right)^{2}=\frac{121}{64}
Factor x^{2}+\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{121}{64}}
Take the square root of both sides of the equation.
x+\frac{3}{8}=\frac{11}{8} x+\frac{3}{8}=-\frac{11}{8}
Simplify.
x=1 x=-\frac{7}{4}
Subtract \frac{3}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}