Evaluate
\frac{\left(x-1\right)\left(x^{3}-25\right)}{625}
Expand
\frac{x^{4}}{625}-\frac{x^{3}}{625}-\frac{x}{25}+\frac{1}{25}
Graph
Quiz
Polynomial
\frac{ x-1 }{ \frac{ 5 }{ { \left( \frac{ x }{ 5 } \right) }^{ 3 } - \frac{ 1 }{ 5 } } }
Share
Copied to clipboard
\frac{\left(x-1\right)\left(\left(\frac{x}{5}\right)^{3}-\frac{1}{5}\right)}{5}
Divide x-1 by \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}} by multiplying x-1 by the reciprocal of \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}}.
\frac{\left(x-1\right)\left(\frac{x^{3}}{5^{3}}-\frac{1}{5}\right)}{5}
To raise \frac{x}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x-1\right)\left(\frac{x^{3}}{125}-\frac{25}{125}\right)}{5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5^{3} and 5 is 125. Multiply \frac{1}{5} times \frac{25}{25}.
\frac{\left(x-1\right)\times \frac{x^{3}-25}{125}}{5}
Since \frac{x^{3}}{125} and \frac{25}{125} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5}
Express \left(x-1\right)\times \frac{x^{3}-25}{125} as a single fraction.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{125\times 5}
Express \frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5} as a single fraction.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{625}
Multiply 125 and 5 to get 625.
\frac{x^{4}-25x-x^{3}+25}{625}
Use the distributive property to multiply x-1 by x^{3}-25.
\frac{\left(x-1\right)\left(\left(\frac{x}{5}\right)^{3}-\frac{1}{5}\right)}{5}
Divide x-1 by \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}} by multiplying x-1 by the reciprocal of \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}}.
\frac{\left(x-1\right)\left(\frac{x^{3}}{5^{3}}-\frac{1}{5}\right)}{5}
To raise \frac{x}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x-1\right)\left(\frac{x^{3}}{125}-\frac{25}{125}\right)}{5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5^{3} and 5 is 125. Multiply \frac{1}{5} times \frac{25}{25}.
\frac{\left(x-1\right)\times \frac{x^{3}-25}{125}}{5}
Since \frac{x^{3}}{125} and \frac{25}{125} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5}
Express \left(x-1\right)\times \frac{x^{3}-25}{125} as a single fraction.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{125\times 5}
Express \frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5} as a single fraction.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{625}
Multiply 125 and 5 to get 625.
\frac{x^{4}-25x-x^{3}+25}{625}
Use the distributive property to multiply x-1 by x^{3}-25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}