Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(x-1\right)=1000\times 2
Multiply both sides by 2.
x^{2}-x=1000\times 2
Use the distributive property to multiply x by x-1.
x^{2}-x=2000
Multiply 1000 and 2 to get 2000.
x^{2}-x-2000=0
Subtract 2000 from both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2000\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -2000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+8000}}{2}
Multiply -4 times -2000.
x=\frac{-\left(-1\right)±\sqrt{8001}}{2}
Add 1 to 8000.
x=\frac{-\left(-1\right)±3\sqrt{889}}{2}
Take the square root of 8001.
x=\frac{1±3\sqrt{889}}{2}
The opposite of -1 is 1.
x=\frac{3\sqrt{889}+1}{2}
Now solve the equation x=\frac{1±3\sqrt{889}}{2} when ± is plus. Add 1 to 3\sqrt{889}.
x=\frac{1-3\sqrt{889}}{2}
Now solve the equation x=\frac{1±3\sqrt{889}}{2} when ± is minus. Subtract 3\sqrt{889} from 1.
x=\frac{3\sqrt{889}+1}{2} x=\frac{1-3\sqrt{889}}{2}
The equation is now solved.
x\left(x-1\right)=1000\times 2
Multiply both sides by 2.
x^{2}-x=1000\times 2
Use the distributive property to multiply x by x-1.
x^{2}-x=2000
Multiply 1000 and 2 to get 2000.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2000+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=2000+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{8001}{4}
Add 2000 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{8001}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{8001}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{3\sqrt{889}}{2} x-\frac{1}{2}=-\frac{3\sqrt{889}}{2}
Simplify.
x=\frac{3\sqrt{889}+1}{2} x=\frac{1-3\sqrt{889}}{2}
Add \frac{1}{2} to both sides of the equation.