Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(24-4x+4\right)=-520\times 2
Multiply both sides by 2.
x\left(28-4x\right)=-520\times 2
Add 24 and 4 to get 28.
28x-4x^{2}=-520\times 2
Use the distributive property to multiply x by 28-4x.
28x-4x^{2}=-1040
Multiply -520 and 2 to get -1040.
28x-4x^{2}+1040=0
Add 1040 to both sides.
-4x^{2}+28x+1040=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{28^{2}-4\left(-4\right)\times 1040}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 28 for b, and 1040 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\left(-4\right)\times 1040}}{2\left(-4\right)}
Square 28.
x=\frac{-28±\sqrt{784+16\times 1040}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-28±\sqrt{784+16640}}{2\left(-4\right)}
Multiply 16 times 1040.
x=\frac{-28±\sqrt{17424}}{2\left(-4\right)}
Add 784 to 16640.
x=\frac{-28±132}{2\left(-4\right)}
Take the square root of 17424.
x=\frac{-28±132}{-8}
Multiply 2 times -4.
x=\frac{104}{-8}
Now solve the equation x=\frac{-28±132}{-8} when ± is plus. Add -28 to 132.
x=-13
Divide 104 by -8.
x=-\frac{160}{-8}
Now solve the equation x=\frac{-28±132}{-8} when ± is minus. Subtract 132 from -28.
x=20
Divide -160 by -8.
x=-13 x=20
The equation is now solved.
x\left(24-4x+4\right)=-520\times 2
Multiply both sides by 2.
x\left(28-4x\right)=-520\times 2
Add 24 and 4 to get 28.
28x-4x^{2}=-520\times 2
Use the distributive property to multiply x by 28-4x.
28x-4x^{2}=-1040
Multiply -520 and 2 to get -1040.
-4x^{2}+28x=-1040
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+28x}{-4}=-\frac{1040}{-4}
Divide both sides by -4.
x^{2}+\frac{28}{-4}x=-\frac{1040}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-7x=-\frac{1040}{-4}
Divide 28 by -4.
x^{2}-7x=260
Divide -1040 by -4.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=260+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=260+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{1089}{4}
Add 260 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{1089}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1089}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{33}{2} x-\frac{7}{2}=-\frac{33}{2}
Simplify.
x=20 x=-13
Add \frac{7}{2} to both sides of the equation.