Evaluate
\frac{x^{2}+hx+1}{x\left(x+h\right)}
Expand
\frac{x^{2}+hx+1}{x\left(x+h\right)}
Graph
Share
Copied to clipboard
\frac{h-\frac{1}{x+h}+\frac{1}{x}}{h}
Combine x and -x to get 0.
\frac{\frac{h\left(x+h\right)}{x+h}-\frac{1}{x+h}+\frac{1}{x}}{h}
To add or subtract expressions, expand them to make their denominators the same. Multiply h times \frac{x+h}{x+h}.
\frac{\frac{h\left(x+h\right)-1}{x+h}+\frac{1}{x}}{h}
Since \frac{h\left(x+h\right)}{x+h} and \frac{1}{x+h} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{hx+h^{2}-1}{x+h}+\frac{1}{x}}{h}
Do the multiplications in h\left(x+h\right)-1.
\frac{\frac{\left(hx+h^{2}-1\right)x}{x\left(x+h\right)}+\frac{x+h}{x\left(x+h\right)}}{h}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+h and x is x\left(x+h\right). Multiply \frac{hx+h^{2}-1}{x+h} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{x+h}{x+h}.
\frac{\frac{\left(hx+h^{2}-1\right)x+x+h}{x\left(x+h\right)}}{h}
Since \frac{\left(hx+h^{2}-1\right)x}{x\left(x+h\right)} and \frac{x+h}{x\left(x+h\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{hx^{2}+h^{2}x-x+x+h}{x\left(x+h\right)}}{h}
Do the multiplications in \left(hx+h^{2}-1\right)x+x+h.
\frac{\frac{h+h^{2}x+hx^{2}}{x\left(x+h\right)}}{h}
Combine like terms in hx^{2}+h^{2}x-x+x+h.
\frac{h+h^{2}x+hx^{2}}{x\left(x+h\right)h}
Express \frac{\frac{h+h^{2}x+hx^{2}}{x\left(x+h\right)}}{h} as a single fraction.
\frac{h\left(x^{2}+hx+1\right)}{hx\left(x+h\right)}
Factor the expressions that are not already factored.
\frac{x^{2}+hx+1}{x\left(x+h\right)}
Cancel out h in both numerator and denominator.
\frac{x^{2}+hx+1}{x^{2}+hx}
Expand the expression.
\frac{h-\frac{1}{x+h}+\frac{1}{x}}{h}
Combine x and -x to get 0.
\frac{\frac{h\left(x+h\right)}{x+h}-\frac{1}{x+h}+\frac{1}{x}}{h}
To add or subtract expressions, expand them to make their denominators the same. Multiply h times \frac{x+h}{x+h}.
\frac{\frac{h\left(x+h\right)-1}{x+h}+\frac{1}{x}}{h}
Since \frac{h\left(x+h\right)}{x+h} and \frac{1}{x+h} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{hx+h^{2}-1}{x+h}+\frac{1}{x}}{h}
Do the multiplications in h\left(x+h\right)-1.
\frac{\frac{\left(hx+h^{2}-1\right)x}{x\left(x+h\right)}+\frac{x+h}{x\left(x+h\right)}}{h}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+h and x is x\left(x+h\right). Multiply \frac{hx+h^{2}-1}{x+h} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{x+h}{x+h}.
\frac{\frac{\left(hx+h^{2}-1\right)x+x+h}{x\left(x+h\right)}}{h}
Since \frac{\left(hx+h^{2}-1\right)x}{x\left(x+h\right)} and \frac{x+h}{x\left(x+h\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{hx^{2}+h^{2}x-x+x+h}{x\left(x+h\right)}}{h}
Do the multiplications in \left(hx+h^{2}-1\right)x+x+h.
\frac{\frac{h+h^{2}x+hx^{2}}{x\left(x+h\right)}}{h}
Combine like terms in hx^{2}+h^{2}x-x+x+h.
\frac{h+h^{2}x+hx^{2}}{x\left(x+h\right)h}
Express \frac{\frac{h+h^{2}x+hx^{2}}{x\left(x+h\right)}}{h} as a single fraction.
\frac{h\left(x^{2}+hx+1\right)}{hx\left(x+h\right)}
Factor the expressions that are not already factored.
\frac{x^{2}+hx+1}{x\left(x+h\right)}
Cancel out h in both numerator and denominator.
\frac{x^{2}+hx+1}{x^{2}+hx}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}