Solve for a
a=\frac{eb+bd-cx}{c}
b\neq 0\text{ and }c\neq 0
Solve for b
\left\{\begin{matrix}b=\frac{c\left(x+a\right)}{d+e}\text{, }&x\neq -a\text{ and }c\neq 0\text{ and }d\neq -e\\b\neq 0\text{, }&d=-e\text{ and }x=-a\text{ and }c\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
c\left(x+a\right)=b\left(d+e\right)
Multiply both sides of the equation by bc, the least common multiple of b,c.
cx+ca=b\left(d+e\right)
Use the distributive property to multiply c by x+a.
cx+ca=bd+be
Use the distributive property to multiply b by d+e.
ca=bd+be-cx
Subtract cx from both sides.
ca=eb+bd-cx
The equation is in standard form.
\frac{ca}{c}=\frac{eb+bd-cx}{c}
Divide both sides by c.
a=\frac{eb+bd-cx}{c}
Dividing by c undoes the multiplication by c.
c\left(x+a\right)=b\left(d+e\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by bc, the least common multiple of b,c.
cx+ca=b\left(d+e\right)
Use the distributive property to multiply c by x+a.
cx+ca=bd+be
Use the distributive property to multiply b by d+e.
bd+be=cx+ca
Swap sides so that all variable terms are on the left hand side.
\left(d+e\right)b=cx+ca
Combine all terms containing b.
\left(d+e\right)b=cx+ac
The equation is in standard form.
\frac{\left(d+e\right)b}{d+e}=\frac{c\left(x+a\right)}{d+e}
Divide both sides by d+e.
b=\frac{c\left(x+a\right)}{d+e}
Dividing by d+e undoes the multiplication by d+e.
b=\frac{c\left(x+a\right)}{d+e}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}