Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+6}{x^{2}-7^{2}}\times \frac{x-7}{\left(x+6\right)\left(x-6\right)}
Consider \left(x+7\right)\left(x-7\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x+6}{x^{2}-49}\times \frac{x-7}{\left(x+6\right)\left(x-6\right)}
Calculate 7 to the power of 2 and get 49.
\frac{x+6}{x^{2}-49}\times \frac{x-7}{x^{2}-6^{2}}
Consider \left(x+6\right)\left(x-6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x+6}{x^{2}-49}\times \frac{x-7}{x^{2}-36}
Calculate 6 to the power of 2 and get 36.
\frac{\left(x+6\right)\left(x-7\right)}{\left(x^{2}-49\right)\left(x^{2}-36\right)}
Multiply \frac{x+6}{x^{2}-49} times \frac{x-7}{x^{2}-36} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-7\right)\left(x+6\right)}{\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+7\right)}
Factor the expressions that are not already factored.
\frac{1}{\left(x-6\right)\left(x+7\right)}
Cancel out \left(x-7\right)\left(x+6\right) in both numerator and denominator.
\frac{1}{x^{2}+x-42}
Expand the expression.
\frac{x+6}{x^{2}-7^{2}}\times \frac{x-7}{\left(x+6\right)\left(x-6\right)}
Consider \left(x+7\right)\left(x-7\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x+6}{x^{2}-49}\times \frac{x-7}{\left(x+6\right)\left(x-6\right)}
Calculate 7 to the power of 2 and get 49.
\frac{x+6}{x^{2}-49}\times \frac{x-7}{x^{2}-6^{2}}
Consider \left(x+6\right)\left(x-6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x+6}{x^{2}-49}\times \frac{x-7}{x^{2}-36}
Calculate 6 to the power of 2 and get 36.
\frac{\left(x+6\right)\left(x-7\right)}{\left(x^{2}-49\right)\left(x^{2}-36\right)}
Multiply \frac{x+6}{x^{2}-49} times \frac{x-7}{x^{2}-36} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-7\right)\left(x+6\right)}{\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+7\right)}
Factor the expressions that are not already factored.
\frac{1}{\left(x-6\right)\left(x+7\right)}
Cancel out \left(x-7\right)\left(x+6\right) in both numerator and denominator.
\frac{1}{x^{2}+x-42}
Expand the expression.