Solve for x
x=\frac{\sqrt{561}}{12}+\frac{9}{4}\approx 4.223786547
x=-\frac{\sqrt{561}}{12}+\frac{9}{4}\approx 0.276213453
Graph
Share
Copied to clipboard
\left(3x-2\right)\left(x+5\right)+\left(3x-2\right)x=\left(2x-3\right)\left(6x+1\right)
Variable x cannot be equal to any of the values \frac{2}{3},\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-3\right)\left(3x-2\right), the least common multiple of 2x-3,3x-2.
3x^{2}+13x-10+\left(3x-2\right)x=\left(2x-3\right)\left(6x+1\right)
Use the distributive property to multiply 3x-2 by x+5 and combine like terms.
3x^{2}+13x-10+3x^{2}-2x=\left(2x-3\right)\left(6x+1\right)
Use the distributive property to multiply 3x-2 by x.
6x^{2}+13x-10-2x=\left(2x-3\right)\left(6x+1\right)
Combine 3x^{2} and 3x^{2} to get 6x^{2}.
6x^{2}+11x-10=\left(2x-3\right)\left(6x+1\right)
Combine 13x and -2x to get 11x.
6x^{2}+11x-10=12x^{2}-16x-3
Use the distributive property to multiply 2x-3 by 6x+1 and combine like terms.
6x^{2}+11x-10-12x^{2}=-16x-3
Subtract 12x^{2} from both sides.
-6x^{2}+11x-10=-16x-3
Combine 6x^{2} and -12x^{2} to get -6x^{2}.
-6x^{2}+11x-10+16x=-3
Add 16x to both sides.
-6x^{2}+27x-10=-3
Combine 11x and 16x to get 27x.
-6x^{2}+27x-10+3=0
Add 3 to both sides.
-6x^{2}+27x-7=0
Add -10 and 3 to get -7.
x=\frac{-27±\sqrt{27^{2}-4\left(-6\right)\left(-7\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 27 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27±\sqrt{729-4\left(-6\right)\left(-7\right)}}{2\left(-6\right)}
Square 27.
x=\frac{-27±\sqrt{729+24\left(-7\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-27±\sqrt{729-168}}{2\left(-6\right)}
Multiply 24 times -7.
x=\frac{-27±\sqrt{561}}{2\left(-6\right)}
Add 729 to -168.
x=\frac{-27±\sqrt{561}}{-12}
Multiply 2 times -6.
x=\frac{\sqrt{561}-27}{-12}
Now solve the equation x=\frac{-27±\sqrt{561}}{-12} when ± is plus. Add -27 to \sqrt{561}.
x=-\frac{\sqrt{561}}{12}+\frac{9}{4}
Divide -27+\sqrt{561} by -12.
x=\frac{-\sqrt{561}-27}{-12}
Now solve the equation x=\frac{-27±\sqrt{561}}{-12} when ± is minus. Subtract \sqrt{561} from -27.
x=\frac{\sqrt{561}}{12}+\frac{9}{4}
Divide -27-\sqrt{561} by -12.
x=-\frac{\sqrt{561}}{12}+\frac{9}{4} x=\frac{\sqrt{561}}{12}+\frac{9}{4}
The equation is now solved.
\left(3x-2\right)\left(x+5\right)+\left(3x-2\right)x=\left(2x-3\right)\left(6x+1\right)
Variable x cannot be equal to any of the values \frac{2}{3},\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-3\right)\left(3x-2\right), the least common multiple of 2x-3,3x-2.
3x^{2}+13x-10+\left(3x-2\right)x=\left(2x-3\right)\left(6x+1\right)
Use the distributive property to multiply 3x-2 by x+5 and combine like terms.
3x^{2}+13x-10+3x^{2}-2x=\left(2x-3\right)\left(6x+1\right)
Use the distributive property to multiply 3x-2 by x.
6x^{2}+13x-10-2x=\left(2x-3\right)\left(6x+1\right)
Combine 3x^{2} and 3x^{2} to get 6x^{2}.
6x^{2}+11x-10=\left(2x-3\right)\left(6x+1\right)
Combine 13x and -2x to get 11x.
6x^{2}+11x-10=12x^{2}-16x-3
Use the distributive property to multiply 2x-3 by 6x+1 and combine like terms.
6x^{2}+11x-10-12x^{2}=-16x-3
Subtract 12x^{2} from both sides.
-6x^{2}+11x-10=-16x-3
Combine 6x^{2} and -12x^{2} to get -6x^{2}.
-6x^{2}+11x-10+16x=-3
Add 16x to both sides.
-6x^{2}+27x-10=-3
Combine 11x and 16x to get 27x.
-6x^{2}+27x=-3+10
Add 10 to both sides.
-6x^{2}+27x=7
Add -3 and 10 to get 7.
\frac{-6x^{2}+27x}{-6}=\frac{7}{-6}
Divide both sides by -6.
x^{2}+\frac{27}{-6}x=\frac{7}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-\frac{9}{2}x=\frac{7}{-6}
Reduce the fraction \frac{27}{-6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{9}{2}x=-\frac{7}{6}
Divide 7 by -6.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=-\frac{7}{6}+\left(-\frac{9}{4}\right)^{2}
Divide -\frac{9}{2}, the coefficient of the x term, by 2 to get -\frac{9}{4}. Then add the square of -\frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{2}x+\frac{81}{16}=-\frac{7}{6}+\frac{81}{16}
Square -\frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{187}{48}
Add -\frac{7}{6} to \frac{81}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{4}\right)^{2}=\frac{187}{48}
Factor x^{2}-\frac{9}{2}x+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{187}{48}}
Take the square root of both sides of the equation.
x-\frac{9}{4}=\frac{\sqrt{561}}{12} x-\frac{9}{4}=-\frac{\sqrt{561}}{12}
Simplify.
x=\frac{\sqrt{561}}{12}+\frac{9}{4} x=-\frac{\sqrt{561}}{12}+\frac{9}{4}
Add \frac{9}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}