Solve for x
x=18
Graph
Share
Copied to clipboard
x+4.5=x\times \frac{2}{1.6}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x+4.5=x\times \frac{20}{16}
Expand \frac{2}{1.6} by multiplying both numerator and the denominator by 10.
x+4.5=x\times \frac{5}{4}
Reduce the fraction \frac{20}{16} to lowest terms by extracting and canceling out 4.
x+4.5-x\times \frac{5}{4}=0
Subtract x\times \frac{5}{4} from both sides.
-\frac{1}{4}x+4.5=0
Combine x and -x\times \frac{5}{4} to get -\frac{1}{4}x.
-\frac{1}{4}x=-4.5
Subtract 4.5 from both sides. Anything subtracted from zero gives its negation.
x=-4.5\left(-4\right)
Multiply both sides by -4, the reciprocal of -\frac{1}{4}.
x=18
Multiply -4.5 and -4 to get 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}